Смекни!
smekni.com

Решение системы линейных уравнений (стр. 1 из 3)

Министерство образования и науки Республики Беларусь

Белорусский государственный университет

информатики и радиоэлектроники

Факультет информационных технологий и управления

Кафедра Вычислительных Методов и Программирования

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе

по программированию

на тему:

«Решение системы линейных уравнений»

Выполнил: Принял:

ст.гр.020603 Навроцкий А.А.

Червоный А.В.

Минск 2001г.


Содержание

Введение.

1. Анализ существующих методов решения задачи.

2. Описание используемого метода.

3. Анализ результатов.

Вывод.

Список использованной литературы.

Приложение (распечатка программы, результатов).


Введение

Решение систем линейных алгебраических уравнений (СЛАУ) является одной из основных задач линейной алгебры. Эта задача имеет важное прикладное значение при решении научных и технических проблем. Кроме того, является вспомогательной при реализации многих алгоритмов вычислительной математики, математической физики, обработки результатов экспериментальных исследований.

Применяемые на практике численные методы решения СЛАУ делятся на две группы - прямые и итерационные.

В прямых (или точных) методах решение системы получают за конечное число арифметических действий. К ним относятся известное правило Крамера нахождения решения с помощью определителей, метод последовательного исключения неизвестных (метод Гаусса) и его модификации, метод прогонки и другие. Сопоставление различных прямых методов проводится обычно по числу арифметический действий, необходимых для получения решения. Прямые методы являются универсальными и применяются для решения систем до порядка 103. Отметим, что вследствие погрешностей округления при решении задач на ЭВМ прямые методы на самом деле не приводят к точному решению системы.

Итерационные (или приближенные) методы являются бесконечными и находят решение системы как предел при k®¥ последовательных приближений x(k), где k - номер итерации. Обычно задается точность e, и вычисления проводятся до тех пор, пока не будет выполнена оценка ºx(k)x(k-1) º< e. Число итераций n(e), которое необходимо провести для получения заданной точности, для многих методов можно найти из теоретических рассмотрений. Качество различных итерационных методов можно сравнивать по необходимому числу итераций n(e). Эти методы особенно предпочтительны для систем с матрицами специального вида - симметричными, трехдиагональными, ленточными и большими разреженными матрицами.

Выбор среды программирования.

После проведенного обзора программных средств мы выбрали среду программирования наиболее подходящую нам как очень удобное средство для разработки данного программного продукта. DELPHI 5.0 является наиболее выгодной нам средой программирования.


1. Анализ существующих методов решения задачи

Прямые методы решения СЛАУ. К прямым (или точным) методам решения СЛАУ относятся алгоритмы, которые в предположении, что вычисления ведутся без округлений, позволяют получить точное решение системы за конечное число арифметических действий. Чаще всего решение задач такими методами осуществляется поэтапно: на первом этапе систему преобразуют к тому или иному простому виду, на втором - решают упрощенную систему и получают значения неизвестных.

Запишем систему линейных алгебраических уравнений в развернутом виде:

где x1, x2,..., xn - неизвестные величины, b1, b2,..., bn - элементы правой части. Если определитель системы отличен от нуля, то она имеет единственное решение. Для удобства дальнейших преобразований обозначим элементы правой части аi(n+1) и запишем расширенную матрицу размерами n´(n+1), которая содержит всю информацию о системе:

A =

.

С этой матрицей можно обращаться так же, как и с системой - переставлять строки, прибавлять кратное одной строки к другой, исключая неизвестные и приводя матрицу к треугольному или диагональному виду.

Приведем формальное описание схем некоторых прямых методов.

Метод Гаусса (схема единственного деления). Алгоритм метода состоит из двух этапов. Первый этап называется прямым ходом метода и заключается в последовательном исключении неизвестных из уравнений, т.е. в приведении матрицы А к верхнему треугольному виду (ниже главной диагонали все нули). Для этого на первом шаге разделим первое уравнение системы на а11 (предположим, что коэффициент а11 ¹ 0, в противном случае осуществляем перестановку уравнений системы). Обозначим коэффициенты полученного приведенного уравнения

, домножим его на коэффициент а21 и вычтем из второго уравнения системы, исключая тем самым х1 из второго уравнения (обнуляя коэффициент а12 матрицы). Поступим аналогично с остальными уравнениями и получим новую систему, матрица которой в первом столбце, кроме первого элемента, содержит только нули, т.е.

.

Первое уравнение в дальнейших преобразования не участвует. Описанный выше процесс исключения неизвестных применим к матрице

размерами (n-1) n. После k аналогичных шагов получим k приведенных уравнений с коэффициентами


и матрицу

размерами (n - k) (n - k+1), элементы которой вычисляются по формулам

.

Элементы

, на которые осуществляется деление, называются ведущими элементами метода Гаусса и не должны равняться нулю. Прямой ход метода Гаусса заканчивается после n шагов определением
.

Обратный ход метода Гаусса заключается в последовательном определении компонент решения, начиная с хn и заканчивая х1, по следующим формулам:

Метод Гаусса с выбором главного элемента. Метод заключается в том, что при прямом ходе в алгоритме метода Гаусса на каждом шаге исключения производится выбор наибольшего по модулю элемента в качестве ведущего. Этого достигают перестановкой строк или столбцов матрицы коэффициентов. Наиболее распространённой в вычислительной практике является стратегия выбора главного элемента столбца - нахождение максимального по модулю элемента k-го столбца матрицы

и использование его в качестве ведущего элемента на k-м шаге исключения. В этом случае для невырожденных систем гарантируется, что ведущие элементы не равны нулю, и уменьшается погрешность при делении и последующем вычитании при преобразованиях. Рекомендуется также масштабировать предварительно каждое уравнение исходной системы, разделив на его наибольший по абсолютной величине коэффициент. Это делает рост элементов промежуточных матриц ограниченным.

Метод оптимального исключения. В целях экономии оперативной памяти (примерно в 4 раза) операции прямого и обратного хода метода Гаусса выполняются попеременно. На первом шаге после приведения первого уравнения исключается неизвестное x1 из второго уравнения, а затем с помощью приведенного второго уравнения - неизвестное x2 из первого. После (k-1) таких шагов матрица системы имеет вид

.

На k-м шаге, используя первые k уравнений, исключаем неизвестные x1,..,xk из (k+1)-го уравнения. Затем посредством этого уравнения исключается неизвестное xk+1 из первых k уравнений и т.д. В результате прямого хода матрица системы приводится к диагональному виду с единицами на главной диагонали. При этом отпадает необходимость обратного хода, поскольку столбец правой части приведенной матрицы

и является вектором решения.

Метод Гаусса-Жордана. Эта модификация метода Гаусса незначительно отличается от метода оптимального исключения. Операции исключения переменных для каждого приводимого уравнения осуществляют не только ниже, но и выше главной диагонали. Операции с первым уравнением системы полностью аналогичны стандартной схеме. Второе уравнение системы после приведения и домножения на соответствующие коэффициенты вычитаем не только из третьего и последующих уравнений, но и из первого. В результате k таких шагов получаем матрицу

.

Как и в методе оптимального исключения, матрица системы приводится к диагональному виду и вектором решения является столбец

.