Смекни!
smekni.com

Системы распознания текста и ввода данных (стр. 3 из 4)

Форма биомассы для использования ее в качестве биотоплива может быть довольно разнообразной. Биомассу в энергетических целях можно использовать в процессе непосредственного сжигания древесины, соломы, сапропеля (органических донных отложений), а также в переработанном виде как жидкие (эфиры рапсового масла, спирты) или газообразные (биогаз – газовая смесь, основным компонентом которой является метан) топлива. Конверсия биомассы в носителе энергии может происходить физическими, химическими и биологическими методами, последние являются наиболее перспективными.

Мировой опыт показывает, что жидкое биотопливо становится перспективной и популярной категорией энергетических ресурсов, которая по своему значению для мировой энергетики занимает следующую позицию после твердого топлива из биомассы. На сегодняшний день в странах ЕС доля жидкого биотоплива не превышает 0,5% общего использования моторных масел, минерального дизеля и бензина. Это объясняется прежде всего высокой стоимостью производства, что делает жидкое биотопливо неконкурентоспособным по сравнению с традиционным горючим, производящимся из нефти. Несмотря на высокую себестоимость, производство жидкого топлива из биомассы в странах ЕС динамично растет. Прежде всего это происходит благодаря экологически продуманной экономической политике на государственном уровне. Основные пути развития производства жидкого биотоплива, предназначенного для транспортных средств с дизельными двигателями и двигателями внутреннего сгорания, непосредственно связаны с выращиванием масличных культур и растений с большим содержанием крахмала. В зависимости от вида сырья и масштабов производства, затраты на изготовление этого вида биотоплив меняются в диапазоне от 0,4 долл. /дм3 для этанола из кукурузы в США до 0,6 долл. /дм3 для метиловых эфиров высших жирных кислот из растительных масел в Европе. По сравнению с ними, стоимость производства жидкого топлива из полезных ископаемых составляет около 0,2 долл. /дм3. Хотя сегодня производство такого биотоплива – процесс более дорогостоящий, эксперты утверждают, что различие в стоимости био- и минерального горючего начнет исчезать примерно в 2010 году. На основе проведенных в США исследований установлено: стоимость ликвидации негативных последствий, наблюдаемых в окружающей среде и вызванных производством и применением топлива из полезных ископаемых, колеблется в пределах от 0,1 до 0,4 долл. /дм3. Таким образом, суммарный баланс стоимости указывает на то, что горючее, полученное из возобновляемых биологических источников, может быть дешевле в валовом экономическом расчете.

Еще одним возможным путем дополнения и частичной замены традиционных видов топлива является получение и использование биогаза. Важный аргумент в пользу этого источника энергии – необходимость решения на современном уровне экологических проблем, связанных с утилизацией отходов. Одна из основных тенденций при экологически безопасной переработке органических отходов – развитие комплексных технологий утилизации биомассы за счет метанового сбраживания, в результате которого образовуется биогаз. Сырье для производства биогаза – это, прежде всего, разнообразные органические отходы агропромышленного комплекса, которые богаты целлюлозой и прочими полисахаридами. Преобразование органических отходов в биогаз происходит в результате целого комплекса сложных биохимических превращений. Этот процесс получил название ферментации биомассы. Он происходит только благодаря бактериям и осуществляется в специальных технологических установках – ферментаторах. Необходимость создания и поддерживания оптимальных условий для роста и существования культуры бактерий в ферментаторе определяет себестоимость получения биогаза. Существует ошибочное представление, будто главное назначение ферментационных установок – получения биогаза, служащего дополнительным источником местного энергоснабжения. Оценивая с этой точки зрения экономическую эффективность переработки биомассы, сторонники этого подхода не учитывают, что биогазовые установки являются также оборудованием для переработки навоза и прочих органических отходов. Поэтому экономические затраты на их создание и эксплуатацию нужно рассматривать комплексно. При подсчете себестоимости биогаза необходимо учитывать стоимость мероприятий по утилизации отходов и защиты окружающей среды. В таком случае построение и эксплуатация биогазовых установок всегда будет иметь положительный экономический эффект. Расчеты свидетельствуют: несмотря на значительные капитальные вложения, срок окупаемости промышленной биогазовой установки равняется приблизительно трем годам. Объемы современного производства биогаза из агропромышленного сырья в Украине специалисты Национального аграрного университета оценивают на уровне 1,6 млн. тонн условного топлива. Учитывая технологические возможности использования зеленой массы как исходного сырья для получения биогаза, потенциальные возможности синтеза биогаза и использование его как топлива можно считать достаточно большими.

Недавно появились сообщения о возможности переработки органических соединений растительного происхождения для получения водорода, что, с точки зрения экологии, является идеальным топливом, имеющим высокую теплообразовательную способность (12,8 кДж/м3) и сгорающим без образования каких-либо вредных примесей. Существуют фототрофные бактерии, способные выделять водород под действием света. Пока они работают достаточно медленно. Но в них заложены природой такие биохимические механизмы и содержатся такие ферменты, которые позволяют катализировать образование водорода из воды. Некоторые ферменты параллельно с водородом образовывают и кислород, то есть происходит фотолиз воды. Примером может служить система, включающая хлоропласты или хлорофилл и фермент гидрогенеза. Хотя это направление пока не дало практических результатов, оно довольно перспективно для дальнейшего развития биоэнергетики.

Несмотря на то, что новые электродные материалы обладают в несколько раз меньшей по сравнению с чистым литием удельной электрической энергией, аккумуляторы на их основе получаются достаточно безопасными для человека при условии соблюдения некоторых мер предосторожности в ходе заряда-разряда. А удельные зарядно-разрядные характеристики литий-ионных аккумуляторов на основе оксидов все-таки превышают аналогичные показатели NiCd- и NiMH-аккумуляторов по крайней мере вдвое, хорошо работают на больших токах (что необходимо, например, при использовании в сотовых телефонах и портативных компьютерах) и имеют низкий саморазряд (для современных батарей – всего 2-5% в месяц). Как и все аккумуляторы, литиевые подвержены старению, но в меньшей степени, чем многие конкуренты, – и через 2 года батарея сохраняет более 80% емкости.

Однако для Li-Ion-технологий по-прежнему требуется обеспечение техники безопасности, поэтому каждый пакет аккумуляторов должен быть оборудован электрической схемой управления, чтобы ограничить пиковое напряжение каждого элемента во время заряда, а также предотвратить понижение напряжения элемента при разряде ниже допустимого уровня для долговечной работы батарей. Кроме того, следует ограничить максимальный ток заряда и разряда и контролировать температуру элемента. Эти меры приводят к удорожанию аккумуляторов на основе лития, что и является главным препятствием их более широкого распространения, не говоря уж о высокой стоимости как самого лития, так и технологии производства таких батарей (необходимы инертная атмосфера, очистка неводных растворителей и т.д.).

Таким образом, литий-ионные аккумуляторы являются самыми дорогими из доступных сегодня на рынке, и в этом их главный недостаток. Однако рынок литиевых элементов и батарей малой емкости, где цена не оказывает столь существенного влияния, постоянно расширяется, появляются все новые и новые области для их использования, так что, по общему мнению, литий-ионные аккумуляторы на сегодня самые перспективные.

В 1991 году фирма Sony Energetic впервые начала коммерческое производство литий-ионных аккумуляторов и в настоящее время является одним из самых крупных поставщиков. Отметим, что по материалу отрицательного электрода литий-ионные аккумуляторы можно разделить на два основных типа: с отрицательным электродом на основе кокса (технология Sony) и на основе графита. Источники тока с отрицательным электродом на основе графита имеют более плавную разрядную кривую с резким падением напряжения в конце цикла разряда по сравнению с более пологой разрядной кривой аккумулятора с коксовым (сажевым) электродом. Поэтому в целях получения максимально возможной емкости конечное напряжение разряда аккумуляторов с коксовым (сажевым) отрицательным электродом обычно устанавливают ниже, чем на аккумуляторах с графитовым электродом. Так, аналогичные по формфактору литий-ионные аккумуляторы одной и той же компании с номинальным напряжением 3,6 В – это, как правило, аккумуляторы с сажевым электродом, а 3,7 В – с графитовым, то есть производители специально вводят различия по номинальному напряжению, чтобы уравнять характеристики. Сегодня все больше производителей выпускают Li-Ion-аккумуляторы с графитовым отрицательным электродом, которые способны обеспечить более высокий ток нагрузки и меньший нагрев во время заряда-разряда, чем коксовые аккумуляторы.