Смекни!
smekni.com

Дослідження зміни температури термопари за допомогою чисельних методів на ЕОМ (стр. 2 из 7)

Залишкова середня квадратична похибка апроксимації оцінюється:

(1.5)

При побудові апроксимувальної функції використовуються ортогональні поліноми, для яких

, якщо

Коефіцієнти визначаються зі співвідношень

(1.6)

Це спрощує задачу, і тому в багатьох стандартних програмах припасування кривих використовують ортогональні поліноми.

1.2 Класифікація методів

В задачах теорії коливань, електродинаміки, твердотільної електроніки широко використовуються чисельні методи обробки результатів експерименту для описання фізичних параметрів засобів, для задання характеристик активних та пасивних елементів шляхом радіотехнічних кіл.

На Рис.1.2.1 приведено класифікацію чисельних методів обробки результатів експерименту.


Існує два головних підходи до апроксимації даних. При одному з них вимагають, щоб апроксимувальна крива (можливо кусково-гладка) проходила через всі точки, які задані таблицею. При іншому підході дані апроксимують простою функцією, яка використовується при всіх табличних значеннях, але не обов’язково, щоб вона проходила через всі точки. Такий підхід зветься припасуванням кривої, яку прагнуть провести так, щоб її відхилення від табличних даних був мінімальним. Як правило, користуються методом найменших квадратів, тобто зводять до мінімуму суму квадратів різниць між значенням функції, яка визначена обраною кривою, та таблицею.

Інтерполяцію даних проводять тоді, коли:

1) функцію задано таблично для деяких значень аргументу, а треба знайти її значення для значень аргументу, яких у таблиці немає;

2) функцію задано графічно, наприклад за допомогою самописного приладу, а треба знайти її наближений аналітичний вираз;

3) функцію задано аналітичнo, але її вираз досить складний і незручний для виконання різних математичних операцій (диференціювання, інтегрування тощо).

1.3 Опис методів моделювання зміни температури термопари на ЕОМ

Охарактеризуємо основні методи інтерполяції, які приведені на рис.1.2.1.

1.3.1 Інтерполяційний многочлен Лагранжа

Інтерполяція за Лагранжем вживається в загальному випадку для довільно розташованих вузлів.

Інтерполяційний поліном для методу Лагранжа представлений у вигляді:

, (1.7)

де всі

(j=0,…, n) – поліноми ступеня n, коефіцієнти яких можна знайти з допомогою (n+1) рівняння:
.

Для полінома, який шукаємо, отримаємо:

(1.8)

Формулу (1.8) називають інтерполяційний многочлен Лагранжа.

Треба відзначити дві головні властивості поліномів Лагранжа:

1)

(1.9)

2) якщо

лінійно залежить від
, то слушний принцип суперпозиції: інтерполяційний поліном суми декількох функцій дорівнює сумі інтерполяційних поліномів доданків.

Похибка при інтерполяції за Лагранжем може бути оцінена таким чином:

(1.10)

де

.

1.3.2 Перший інтерполяційний многочлен Ньютона.

Інтерполяційний поліном випадку має вигляд:

...

...+

, (1.11)

Коефіцієнти

знаходять з рівнянь:

,
, (1.12)

(1.13)

Формула (1.13) носить назву першої інтерполяційної формули Ньютона. Цей вираз незручний для інтерполяції поблизу останніх значень

.

Похибка інтерполяції для першої формули Ньютона можна оцінити відповідно як:

(1.14)

де

(1.15)

1.3.3 Другий інтерполяційний многочлен Ньютона

В випадку, коли, першу інтерполяційну формулу Ньютона застосувати незручно, використовують другу інтерполяційну формулу Ньютона, яка отримана при використанні лівих різниць від останнього значення

(інтерполяція “назад”). Тоді інтерполяційний поліном має вигляд:

(1.16)

Коефіцієнти

визначаються таким чином:

, (1.17)

(1.18)

– ліва різниця першого порядку в точці
,

(1.19)

– ліва різниця другого порядку.

(1.20)

(1.21)

Формула (1.21) є кінцевим виразом для другої інтерполяційної формули Ньютона.

Похибка інтерполяції для другої формули Ньютона можна оцінити відповідно як:

(1.22)

де

(1.23)

1.3.4 Інтерполювання функцій за схемою Ейткіна

Особливістю інтерполяційної схеми Ейткіна є однотипність обчислень. Якщо в (n+1)-му вузлах інтерполювання xi (i=0,1,…,n) функція f набуває значеньyi (i=0,1,…,n),то значення інтерполяційного многочлена степеня n в точці

, що не зберігається з вузлами інтерполювання, обчислюють за формулою Ейткіна:

(1.24)

де

і
– значення інтерполяційних многочленів (n-1)-го степеня, обчислених у точці х на попередньому кроці обчислень.

Отже, щоб обчислити в точці х значення інтерполяційного многочлена n-го степеня за схемою Ейткіна, треба в цій точці обчислити значення n лінійних, n-1 квадратичних, n-2 кубічних многочленів, два многочлени (n-1)-го степеня і, нарешті, один многочлен n-го степеня.

1.3.5 Сплайн-інтерполяція

Сплайн – це група сполучених кубічних багаточленів, в місцях сполучення яких перша та друга похідні безперервні. Такі функції звуться кубічними сплайнами. Для їх побудування необхідно задати коефіцієнти, які однозначно визначають поліном у проміжку між двома точками.

Наприклад, у випадку, який показаний на рисунку 1.3.1, необхідно задати всі кубічні функції

В найбільш загальному випадку ці багаточлени мають такий вигляд:

i=1,2, ... ,m (1.25)

де

– постійні, які визначені вказаними умовами (j= 1,2,3,4).

Перші (2m) умов потребують, щоб сплайни стикалися в заданих точках:

,i=1, 2, ... , m,

, i=0, 1, ... , m-1. (1.26)

Наступні (2m-2) умов потребують, щоб в місцях дотику сплайнів були рівні перші та другі похідні

i=1, ... , m-1, (1.27)

i=1, ... , m-1.


Система алгебраїчних рівнянь має розв’язок, якщо кількість рівнянь дорівнює кількості невідомих. Для цього необхідні ще два рівняння. Як правило, використовують такі додаткові умови: