Смекни!
smekni.com

Системний блок (стр. 1 из 2)

Содержание

Системний блок

1. Системна плата

2. Стандартні розміри системної плати

3. Об'єднувальна плата

4. Мікропроцесори і мікроконтролери

5. Оперативна пам’ять персонального комп’ютера

6. Динамічна пам’ять (DRAM)

7. SDRAM (Synchronous DRAM)

8. RDRAM (Rambus DRAM)

9. DDR SDRAM (Double Data Rate SDRAM)

Системний блок

1. Системна плата

Найважливішим вузлом ПК є системна плата (main board), інакше звана материнською платою (motherboard). Системна плата є не у всіх комп'ютерах. У деяких ПК елементи, що звичайно встановлюються на системній платі, розташовані на окремій платі розширення, вставленій в роз'єми системної плати - слоти розширення. У комп'ютерах такого типа плата з роз'ємами називається об'єднувальною платою (backplane), а системні блоки подібної конструкції називаються об'єднувальними системними блоками.

Об'єднувальна плата може бути пасивною і активною. На пасивній платі встановлюються роз'єми шини і, можливо, електричні схеми для обробки буферів і дискових накопичувачів. Вся решта компонентів розташовується на одній або декількох плат розширення, що вставляється в роз'єми об'єднувальної плати. Іноді вся схема розмішається на одній платі розширення, яку називають системною, або материнською картою (mothercard). Така системна карта є, по суті, системною платою, що вставляється в роз’їм пасивної об'єднувальної плати. Системи такого типу рідко зустрічаються із-за дорожнечі високопродуктивних системних карт. Конструкції з об'єднувальною платою популярні в промисловості, де їх часто вмонтовують в стійках. Такою ж конструкцією відрізняються деякі могутні сервери файлу.

На активній об'єднувальній платі встановлено контролер шини. Звичайно на ній містяться і інші компоненти. У більшості комп'ютерів на активній об'єднувальній платі розташовуються практично всі вузли звичайної системної плати, окрім процесорного модуля. Процесорний модуль - це плата, на якій встановлені центральний процесор і всі пов'язані з ним вузли, наприклад схема синхронізації, кеш-пам’ять і т. ін. Конструкція з процесорним модулем дозволяє легко перевести систему на інший процесор, змінивши всього одну плату. Фактично йдеться про модульну системну плату із замінюваною секцією процесора. У більшості сучасних ПК об'єднувальна плата активна і має окремий процесорний модуль. На жаль, через відсутність стандарту на спосіб взаємодії процесорного модуля з рештою вузлів системи кожна фірма випускає свою плату, яку можна придбати тільки у виробника конкретного комп'ютера. Таке звуження ринку призводить до того, що ця плата дорожча за більшість повної системної плати (з процесором) інших виробників.

2. Стандартні розміри системної плати

Системна плата випускається в декількох варіантах. Вони відрізняються розмірами, що, у свою чергу, визначає тип корпусу, в якому їх можна встановити. Існують такі основні різновиди системної плати: об'єднувальна плата; повнорозмірна плата AT; Baby-AT; LPX; АТХ; NLX.

3. Об'єднувальна плата

Системна (материнські) плата в повному розумінні цього слова встановлена не у всіх комп'ютерах. У деяких системах ті компоненти, які звичайно знаходяться на системній платі, встановлюються у вже вставлену плату розширення. У таких комп'ютерах головна плата із слотами називається об'єднувальною платою. А використовуючи таку конструкцію комп'ютери називаються комп'ютерами з об'єднувальною платою.

Системи з об'єднувальною платою бувають двох основних типів: пасивні і активні. Пасивна об'єднувальна плата взагалі не містить ніякої електроніки, окрім хіба що роз'ємів шини і декількох буферів і драйверних схем. Вся решта схем звичайної системної плати розміщена на платі розширення. Є пасивні системи, в яких вся системна електроніка знаходиться на єдиній платі розширення. Практично ця плата є справжньою системною, але вона повинна бути вставлена в слот на пасивній об'єднувальній платі. Така конструкція була розроблена для того, щоб модернізувати систему і замінювати в ній будь-яку плату було якомога простіше. Але із-за високої вартості системної плати потрібного типу, подібні конструкції дуже рідко зустрічаються в персональних комп'ютерах. А ось в промислових системах пасивна об'єднувальна плата дуже популярна. І ще їх можна зустріти в деяких могутніх серверах.

Активна об'єднувальна плата містить схеми управління шиною і безліч інших компонентів. На більшості такої плати міститься вся електроніка звичайної системної плати, немає тільки процесорного комплексу. Процесорним комплексом називають ту частину схеми плати, яка включає сам процесор і безпосередньо пов'язані з ним компоненти, такі як тактовий генератор, кеш і т. ін. Виходить, що у вас як би модульна системна плата із замінюваним процесорним комплексом. Більшість сучасних ПК з об'єднувальною платою використовують саме активну плату з окремим процесорним комплексом. Фірми Compaq і IBM використовують таку конструкцію в своїх наймогутніших системах серверного класу. На жаль, інтерфейс процесорних комплексів дотепер не стандартизований.

Обидві конструкції, і що використовує системну платню, і об'єднувальну, мають свої переваги і недоліки. В кінці 70-х в більшості ПК відомих виробників використовувалася об'єднувальна плата. Пізніше за Apple і IBM перейшли до системної плати, оскільки при їх масовому виробництві така конструкція виявилася дешевше. Проте, теоретично, перевагою систем з об'єднувальною платою залишається те, що їх легше модернізувати до нового процесора і нового рівня продуктивності, замінюючи тільки невелику другорядну плату. У комп'ютерах з системною платою для заміни процесора часто доводиться міняти всю системну плату, що набагато складніше.

4. Мікропроцесори і мікроконтролери

Сучасна елементна база - надвеликі інтегральні схеми (НВІС), характеризується великою кількістю транзисторів на кристалі і відносно малою кількістю ніжок. Тому великі інтегральні схеми (ВІС) адекватні побудові логічно закінчених пристроїв.

Різні виконувані функції і сфери застосування зумовили спеціалізацію НВІС. Достатньо умовно їх можна розділити на наступні класи:

1) НВІС з апаратною реалізацією алгоритмів обробки даних:

мікропроцесори універсальні і сигнальні, а також мікроконтролери, включаючи інтерфейсні схеми для утворення мультипроцесорних систем;

2) мікросхеми пам'яті: статичні і динамічні;

3) програмовані логічні інтегральні схеми (ПЛІС).

Універсальні мікропроцесори призначаються для застосування в обчислювальних системах: персональних ЕОМ, робочих станціях, а останнім часом і в масово-паралельних СУПЕР-ЕОМ. Основною їх характеристикою є наявність розвинених пристроїв для ефективної реалізації операцій з плаваючою крапкою над 64 розрядними і довшими операндами. Призначаються в основному для проведення науково-технічних розрахунків.

Цифрові сигнальні процесори розраховані на обробку у реальному часі цифрових потоків, утворених шляхом оцифровування аналогових сигналів. Це обумовлює їх порівняно малу розрядність і переважно цілочисельну обробку. Проте сучасні сигнальні процесори здатні проводити обчислення з плаваючою крапкою над 32 - 40-розрядними операндами. Крім того, з'явився клас медійних процесорів, які є закінченими системами для обробки аудіо - і відеоінформації.

Найбільшою спеціалізацією і різноманітністю функцій володіють мікроконтролери, використовувані у вбудованих системах управління, зокрема в побутових приладах. Загальне число типів кристалів з різними системами команд перевищує 500, і всі вони, через існування виробів з їх використанням, мають свою стійку частку ринку.

За прогнозами компаній-виробників подальший розвиток технології виробництва мікропроцесорів йтиме у напрямі збільшення кількості транзисторів на кристалі, зростання числа шарів металізації і підвищення тактової частоти, разом із зменшенням напруги живлення і питомої (на один транзистор) споживаної електричної теплової енергії, що виділяється.

Технологічна межа лінійних розмірів транзисторів на кристалі, обумовлена фізичними обмеженнями, складає близько 0,05 мкм. На шляху подальшої мініатюризації окрім фізичних обмежень є і економічні. Для кожного наступного покоління мікросхем вартість технології подвоюється. У 2008 р. Intel 80386 мав 250 тис. транзисторів і випускався на заводі вартістю 200 млн. доларів. В даний час завод компанії Intel, що проводить обробку пластин без збірки мікросхем і їх тестування, коштує 2,4 млрд. доларів. Отже завод, що проводить мікросхеми за технологією 0,25 мкм, коштуватиме 10 млрд. доларів. Зростають терміни виготовлення мікропроцесорів. Так процесор Pentium проводиться за шість місяців, а новіший Pentium Pro - за дев'ять. Багато в чому вже зараз рівень технології, використовуваної в масовому виробництві, визначається економічними міркуваннями. Збільшення числа шарів металізації експоненціально підвищує відсоток браку при виробництві, збільшення площі кристала також призводить до зниження виходу придатних кристалів.

5. Оперативна пам’ять персонального комп’ютера

Елементи пам'яті разом з чипсетом і центральним процесором складають основу будь-якого персонального комп'ютера, тому що в них зберігаються необхідні для рішення поставленої задачі дані, що можуть бути в будь-який момент прочитані або змінені.

Пам'ять за всіх часів була критичним ресурсом комп'ютерів. Недарма, щоб досягти компромісу між ціною і продуктивністю, в обчислювальних системах вибудовано цілу ієрархію пам'яті, що розрізняється швидкодією. Вона включає зовнішню пам'ять - найдешевшу, але і найповільнішу (яка, до речі, має свою ієрархію), оперативні запам'ятовуючі пристрої (ОЗП) - вони швидші, але дорожчі, кеш-пам’ять - найшвидший, але і найдорожчий ресурс. ОЗП бувають статичні (надоперативні) і динамічні. Статичні приблизно в 13 разів швидші, ніж динамічні (4,5 МГц проти 60 МГц), однак сьогодні вони занадто дорогі і споживають занадто багато енергії, щоб використовувати їх в обсягах, які відповідають вимогам до сучасних ОЗП. Тому застосування статичної пам'яті, як правило, обмежене щодо невеликої за обсягом кеш-пам'яттю першого (Level 1 - L1), другого (L2), третього (L3) чи четвертого (L4) рівнів (якщо вона не інтегрована на один кристал із процесором).