Смекни!
smekni.com

Программирование системы уравнений (стр. 2 из 4)

Система т линейных уравнений с п неизвестными имеет вид:

x1 , x2, …, xn – неизвестные.

aij- коэффициенты при неизвестных.

bi - свободные члены (или правые части)

Система линейных уравнений называется совместной, если она имеет решение, и несовместной, если она не имеет решения.

Совместная система называется определенной, если она имеет единственное решение и неопределенной, если она имеет бесчисленное множество решений.

Две совместные системы называются равносильными, если они имеют одно и то же множество решений.

К элементарным преобразованиям системы отнесем следующее:

1) перемена местами двух любых уравнений;

2) умножение обеих частей любого из уравнений на произвольное число, отличное от нуля;

3) прибавление к обеим частям одного из уравнений системы соответствующих частей другого уравнения, умноженных на любое действительное число.

Элементарные преобразования переводят систему уравнений в равносильную ей.

Элементарные преобразования системы используются в методе Гаусса.

Для простоты рассмотрим метод Гаусса для системы трех линейных уравнений с тремя неизвестными в случае, когда существует единственное решение:

Дана система:

( 1 )

1-ый шаг метода Гаусса.

На первом шаге исключим неизвестное х1 из всех уравнений системы (1), кроме первого. Пусть коэффициент

. Назовем его ведущим элементом. Разделим первое уравнение системы (1) на а11. Получим уравнение:

( 2 )

где

Исключим х1 из второго и третьего уравнений системы (1). Для этого вычтем из них уравнение (2), умноженное на коэффициент при х1 (соответственно а21 и а31).


Система примет вид:

( 3 )

Верхний индекс (1) указывает, что речь идет о коэффициентах первой преобразованной системы.

2-ой шаг метода Гаусса.

На втором шаге исключим неизвестное х2из третьего уравнения системы (3). Пусть коэффициент

. Выберем его за ведущий элемент и разделим на него второе уравнение системы (3), получим уравнение:

( 4 )

где

Из третьего уравнения системы (3) вычтем уравнение (4), умноженное на

Получим уравнение:

Предполагая, что

находим

В результате преобразований система приняла вид:

(5)

Система вида (5) называется треугольной.

Процесс приведения системы (1) к треугольному виду (5) (шаги 1 и 2) называют прямым ходом метода Гаусса.

Нахождение неизвестных из треугольной системы называют обратным ходом метода Гаусса.

Для этого найденное значение х3 подставляют во второе уравнение системы (5) и находят х2. Затем х2 и х3 подставляют в первое уравнение и находят х1.

В общем случае для системы т линейных уравнений с п неизвестными проводятся аналогичные преобразования. На каждом шаге исключается одно из неизвестных из всех уравнений, расположенных ниже ведущего уравнения.

Отсюда другое называние метода Гаусса – метод последовательного исключения неизвестных.

Если в ходе преобразований системы получается противоречивое уравнение вида 0 = b, где b¹ 0, то это означает, что система несовместна и решений не имеет.

В случае совместной системы после преобразований по методу Гаусса, составляющих прямой ход метода, система т линейных уравнений с п неизвестными будет приведена или к треугольному или к ступенчатому виду.

Треугольная система имеет вид:

Такая система имеет единственное решение, которое находится в результате проведения обратного хода метода гаусса.


Ступенчатая система имеет вид:

Такая система имеет бесчисленное множество решений. Чтобы найти эти решения, во всех уравнениях системы члены с неизвестными хk+1, … , xk переносят в правую часть. Эти неизвестные называются свободными и придают им произвольные значения. Из полученной треугольной системы находим х1, … , xk, которые будут выражаться через свободные неизвестные. Подробнее об этом можно узнать в рекомендуемой литературе.

Рассмотренный метод Гаусса легко программируется на ЭВМ и является более экономичным (по числу действий), чем другие методы.

3 Решение уравнения методами Ньютона, Хорд

Метод хорд (способ пропорциональных частей) — численный метод уточнения корня трансцендентного уравнения.

Точный корень

уравнения
находится на отрезке
. Производная
на этом промежутке непрерывна и сохраняет постоянный знак. Приближенный корень
, при котором
, можно найти используя метод хорд. Для этого нужно взять начальное приближение корня
и применить к нему итерационную формулу:

линейный уравнение хорда гаусс ньютон

,
, если

,
, если

Погрешность вычислений:

,
,

В отличие от метода дихотомии, обращающего внимание лишь на знаки значений функции, но не на сами значения, метод хорд использует пропорциональное деление интервала (рисунок 1).

Рис. 1. Метод хорд Рис.2. Метод касательных

Здесь вычисляются значения функции на концах отрезка и строится “хорда”, соединяющая точки (a, f(a)) и (b, f(b)). Точка пересечения ее с осью абсцисс

принимается за очередное приближение к корню. Анализируя знак f(z) в сопоставлении со знаком f(x) на концах отрезка, сужаем интервал до [a,z] или [z,b] и продолжаем процесс построения хорд до тех пор, пока разница между очередными приближениями не окажется достаточно малой (в пределах допустимой погрешности) |Zn-Zn-1|<

.

Можно доказать, что истинная погрешность найденного приближения:

,

где X* - корень уравнения, Zn и Zn+1 - очередные приближения, m и M – наименьшее.

Метод Ньютона

Пусть корень уравнения

отделен на отрезке [a, b], причем
и
непрерывны и сохраняют определенные знаки при
. Если на некотором произвольном шаге n найдено приближенное значение корня
, то можно уточнить это значение по методу Ньютона. Положим
(1)

где

считаем малой величиной. Применяя формулу Тейлора, получим:

Следовательно,