Смекни!
smekni.com

Виявлення грубих результатів вимірювань (стр. 4 из 4)

, (2.24)

де

- відповідно СКВ (або їх оцінки
) j-ї та l-ї складових випадкової похибки:

;

- нормована взаємна кореляційна функція, або коефіцієнт кореляції:

.

Переходячи у формулі (2.23) до СКВ випадкових похибок з урахуванням (2.24), одержимо вираз для обчислення СКВ сумарної випадкової похибки за її складовими

. (2.25)

Звернемо увагу на те, що ця формула підсумовування випадкових похибок є універсальною, оскільки СКВ (і дисперсія) не залежить від закону розподілу похибок.

Відзначимо, що строго врахувати всі кореляційні зв’язки, а отже, і точно визначити коефіцієнт кореляції між похибками досить складно і не завжди можливо. Так, коефіцієнт кореляції між величинами

визначається виразом

,

де

- результати q-го спостереження величин
,
відповідно,
;

Застосування формули (2.25) потребує ускладнення експерименту і обчислювань. Тому вона не знаходить широкого практичного застосування, а для її спрощення користуються нижчевказаними рекомендаціями щодо задання коефіцієнта кореляції

За степенем корельованості випадкові похибки слід розділити лише на два види: сильно корельовані і слабко корельовані. Умовною границею між сильною і слабкою кореляціями випадкових похибок вважають умову

. Враховуючи це, до сильно корельованих належать похибки, для яких
, і для них приймають
. Прикладами сильно або жорстко корельованих похибок є похибки, викликані однаковою причиною (загальним джерелом живлення, майже однаковим впливом змінювання температури і т.п.), і в інших випадках, коли тісні кореляційні зв’язки між похибками явно проглядаються. До слабко корельованих належать похибки, для яких
і для них приймають
. Такі похибки звичайно викликаються різними причинами, причому такими, що не мають між собою явного зв’язку. Вони також називаються незалежними. Проміжні значення коефіцієнта кореляції, тобто крім
або
, при оцінюванні випадкової похибки, як правило, не використовуються.

У практиці вимірювань здебільшого мають справу з незалежними випадковими похибками, для яких

і формула (2.25) набуває вигляду

(2.26)

Якщо СКВ похибки

визначити у відносних одиницях, то

(2.27)

де

- відносне СКВ j-ї складової похибки.

Інколи для спрощення розрахунків переходять від підсумовування дисперсій (або СКВ) випадкових похибок до підсумовування максимальних (допустимих) значень абсолютних похибок

. Тоді аналогічно формулам (2.22) і (2.26) маємо

(2.28)

Формула для СКЗ сумарної випадкової похибки

дає завищену оцінку в порівнянні з (2.26), але ця оцінка більш вірогідна, ніж "оцінка зверху"
.

Таким чином, арифметичне підсумовування використовується для грубої оцінки сумарної похибки, названої "оцінкою зверху" (або за максимумом), і при випадковому характері похибок. Воно зводиться до підсумовування максимальних значень окремих складових похибок. При такому підході передбачається, що всі складові випадкової похибки мають одночасно і максимальне значення, і однаковий знак. Очевидно, ймовірність такого збігу дуже мала, тому арифметичне підсумовування дає завищену оцінку сумарної випадкової похибки, і похибка цієї оцінки буде тим істотніша, чим більше число складових підсумовується. Тому арифметичне підсумовування випадкових похибок можливе при грубій оцінці сумарної похибки, коли вона містить 2-3 складових.

Переходячи в (2.28) до відносних похибок, маємо

де

При умові

формула (2.25) набуває вигляду

, (2.29)

де знак "+" означає, що для складових з позитивною кореляцією (

) СКВ
треба брати зі знаком "+", а для складових з негативною кореляцією
брати зі знаком "-". Знак модуля належить до
.

Зокрема, при підсумовуванні двох складових випадкової похибки, СКВ яких

, з (2.29) маємо

,

тобто наявність жорсткої кореляції (

) між випадковими складовими похибки приводить до переходу від геометричного їх підсумовування до алгебраїчного.

Таким чином, при виборі того або іншого методу (правила) підсумовування складових похибки визначальною ознакою є не розділ їх на систематичні і випадкові, а ступінь (рівень) кореляційних зв’язків: сильний або слабкий.

Якщо для складових випадкової похибки задано границі довірчих інтервалів

і довірчі ймовірності
, то СКВ кожної із складових, згідно з виразом (2.9), знаходять за формулою

.

Якщо всі складові випадкової похибки підлягають однаковому закону розподілу і мають однакову довірчу ймовірність P, тоді

і
.

При нормальному законі розподілу всіх складових або при кількості складових n ³ 5 сумарна випадкова похибка має нормальний закон розподілу. Отже, її границі довірчого інтервалу з довірчою ймовірністю P можна визначити так:

.