Смекни!
smekni.com

Влияния стоков на динамику почвы и на качество кормовых культур (стр. 10 из 10)

17. Лукьяненков И.И. Перспективные системы утилизации навоза. – М.: Россельхозиздат, 1985. – 166 с.

18. Минеев В.Г. органические удобрения в интенсивном земледелии. – М.: Колос, 1984. – 303 с.

19. Михайлов В.В. Прогноз вводно-солевого режимов почвогрунтов и грунтовых вод при орошении свиностоками. 4 кн., Купава, 1991. – 28 с.

20. Мякотин Г.Н., Овцов Л.П. Рекомендации по использованию стоков свинокомплекса « Родниковский» для орошения и удобрения сельскохозяйственных угодий в условиях Челябинской области. – М.: «Прогресс» ,1991. – 50 с.

21. Мусаилова И.П. Влияние орошения сточными водами и навозными стоками на плодородие почвы: Сб. научн. тр./ВНИИССВ – ВНИИГиМ, 1987. – 163 с.

22. Новиков А.А., Сидоров В.Л., Соловьев А.Н., Фролов О.Н. Справочник по охране труда. – М.: Издательство «Охрана труда и социальное страхование», 1996. – 304 с.

23. Орлов Д.С., Лозановская И.Н., Попов П.Д. Органическое вещество почв и органические удобрения. – М.:МГУ, 1985. – 98 с.

24. Петухов М.Н., Панова Е.А., Дудина И.Х. Агрохимия и система удобрения. – М.: Агропроиздат, 1985. – 351 с.

25. Попов И.А. Экономика сельского хозяйства. – М.: Ассоциация авторов и издателей «ТАМДЕМ». Издательство «Экмос», 1999. – 352 с.

26. Плешков В.П. Практикум по биохимии растений. – М.: Колос, 1968. – 85 с.

27. Розанов В.Г. Орошаемые черноземы. – М.: МГУ., 1989. – 143 с.

28. Семенова П.Я. Бесподстилочный навоз и его использование для удобрения. – М.: Колос, 1978. – 239 с.

29. Филатов Л.С. Безопасность труда в сельскохозяйственном производстве. – М.: Росагропроиздат, 1988. – 364 с.

30. Штыков В.И., Шевелев Я.В., Кошевой О.Ю. Использование стоков животноводческих комплексов на специальных системах. – М.: Россельхозиздат, 1987. – 86 с.

31. Юрков В.М. Микроклимат животноводческих ферм и комплексов. – М.: Россельхозиздат, 1985. – 223 с.

32. Агроэкология/Под редакцией Черникова В.А. и Чекереса А.И. – М.: Колос, 2000. – 528 с.

33. Хлыстовский А.Д. Плодородие почвы при длительном применении удобрений и извести. – М.: Наука, 1992. – 192 с.

34. Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия. – М.: Колос, 2002. – 576 с.


Приложение

Методика определения качества кормовых культур

1. Определение сырого протеина в растениях

Содержание сырого протеина в кормовых культурах зависит от условий азотного питания, почвенно-климатической зоны возделывания сельскохозяйственных растений, агротехники.

Растительное вещество озоляют при температуре 3380С в серной кислоте с перекисью водорода в присутствии катализатора – селена.

Выделившийся из органических соединений и связанный серной кислотой аммиак вытесняется щелочью и отгоняется паром в приемник, где связывается борной кислотой. Поглощенный борной кислотой аммиак учитывается титрованием 0,01 н. раствором серной кислоты. По количеству связанного титрованным раствором серной кислоты аммиака рассчитывают содержание азота в исследуемом растительном материале.

Результаты содержания общего азота используют для определения сырого протеина и количества небелкового азота по разности между общим и белковым азотом.

2. Определение сырого жира в кормах

Метод основан, на способности сырого жира растворятся в органических растворителях, при этом извлекаются не только жиры, но и фосфатиды, стериды, эфирные масла, дубильные вещества и пигменты. Проводится экстракция жира бензином с последующим учетом его по убыли массы вещества, взятого для исследования. Анализ проводится на установке ЭЖ-101 для определения сырого жира методом Рушковского.

3. Определение сырой клетчатки по методу Кюршнера и Ганека в модификации А.В.Петербургского

Клетчатка – важный компонент грубых и сочных кормов. Метод определения клетчатки в растениях основан на том, что при обработке аналитической пробы растительного материала смесью концентрированных азотной и уксусной кислот происходит растворение жиров, гидролиз белков, окисление и нитрование многих органических соединений, сопровождающих клетчатку, не затрагивая реакциями разложения саму клетчатку.

4. Определение калия

Пламенно-фотометрическое определение калия основано на зависимости между интенсивностью излучения в пламени возбуждаемого элемента и концентрацией его в растворе. При определении калия используют спектральные линии 766 и 769 нм.

5. Определение фосфора

Метод основан на образовании в кислой среде фосфорно-ванадо-малибдатного комплекса желтого цвета. При концентрации 1- 20 мг/л интенсивность окраски пропорциональна содержанию фосфора.

6. Определение кальция

Метод заключается в сравнении интенсивности излучения кальция в пламени газ-воздух при введении в него анализируемых растворов и растворов сравнения. Устранение влияния мешающих элементов при определении кальция достигается добавлением в фотометрируемые растворы солей стронция при использовании воздушно-пропановой смеси газов или солей магния при использовании воздушно-ацетиленовой смеси.

7. Определение натрия

Пламенно-фотометрическое определение натрия основано на зависимости между интенсивностью излучения в пламени возбуждаемого элемента и концентрацией его в растворе. При определении натрия используют спектральную линию 589 нм.

8. Определение нитратного азота

Сущность метода заключается в образовании нитрофенольного соединения в результате реакции между нитратами и дисульфофеноловой кислотой. Нитрофенол, реагируя со щелочью, дает комплексное соединение желтого цвета. Между интенсивностью желтого окрашивания и содержанием нитратов в исследуемой пробе существует прямая зависимость. Метод обладает высокой точностью и дает устойчивые результаты.

9. Определение нитратного азота в почве

Сущность метода заключается в извлечении нитратов раствором алюмокалиевых квасцов с массовой долей 1 % или раствором сернокислого калия при соотношении массы пробы почвы и объема раствора 1:2:5 и последующем определении нитратов в вытяжке с помощью ионоселективного электрода.

10. Определение легкогидролизуемого азота методом И.В.Тюрина и М.М.Кононовой

Принцип метода основан на гидролизе азотосодержащих органических соединений почвы 0,5н. H2SO4 на холоду. При этом в раствор, помимо амминого и амидного азота органических соединений, переходит азот нитратов и аммиака. После обработки 0,5 н. H2SO4 в аликвотной части фильтрата восстанавливают азот нитратов и органических соединений (амидный и аминный), переводя его в форму аммиака с последующим определением последнего по Кьельдалю.

11. Определение подвижных форм фосфора и калия по методу Чирикова

Метод основан на извлечении фосфора и калия из одной навески почвы 0,5 М раствором уксусной кислоты при соотношении почва: раствор =1:25 с последующим определением фосфора на фотоэлектроколориметре, калия – на пламенном фотометре.