Смекни!
smekni.com

Квадратурная амплитудная модуляция (стр. 3 из 5)

V.32

Это дуплексный протокол с эхо-подавлением и квадратурной амплитудной модуляцией или модуляцией с решетчатым кодированием. Частота несущего сигнала - 1800 Гц, модуляционная скорость - 2400 бод. Таким образом, используется спектр шириной от 600 до 3000 Гц. Имеет режимы двухпозиционной (бит), четырехпозиционной (дибит) и шестнадцатипозиционной (квадробит) QAM. Соответственно, информационная скорость может быть 2400, 4800 и 9600 бит/с. Кроме того, для скорости 9600 бит/с имеет место альтернативная модуляция - 32-позиционная TCM.

V.32bis

Это дуплексный протокол с эхо-подавлением и модуляцией TCM. Используются те же, что в V.32, частота несущего сигнала - 1800 Гц, и модуляционная скорость - 2400 бод. Имеет режимы 16-TCM, 32-TCM, 64-TCM и 128-TCM. Соответственно, информационная скорость может быть 7200, 9600, 12000 и 14400 бит/с. Режим 32-TCM полностью совместим с соответствующим режимом V.32.

V.34

Дуплексный протокол, максимальная скорость 28800 бит/с. Может также поддерживать 24000 и 19200 бит/с.

V.34bis

Другое название — V.34+. Максимальная скорость 33600 бит/с. Пониженные скорости: 31200, 24000 и 19200 бит/с.

В настоящее время КАМ наиболее широко используется в широкополосных модемах (ADSL, Ethernet). Используется непосредственно алгоритм КАМ (стандарт T1.413 ANSI), а также его разновидности: алгоритмы САР и G.dmt.

Рассмотрим характеристики алгоритма модуляции КАМ более подробно на примере стандарта T1.413 ANSI.

Характеристики алгоритма. [1]

В настоящее время наибольшее распространение получили несколько вариантов QAM. Алгоритм модуляции QAM-4 кодирует сигнал изменением фазы несущего колебания с шагом π/2. Этот алгоритм модуляции имеет название QPSK (Quadrature Phase Shift Keying - квадратурная фазовая манипуляция). Широкое распространение получили также алгоритмы QAM-16, 32, 64, 128 и 256. Алгоритм квадратурной амплитудной модуляции, по сути, является разновидностью алгоритма гармонической амплитудной модуляции и поэтому обладает следующими важными свойствами:

· ширина спектра QAM модулированного колебания не превышает ширину спектра модулирующего сигнала;

· положение спектра QAM модулированного колебания в частотной области определяется номиналом частоты несущего колебания.

Эти полезные свойства алгоритма обеспечивают возможность построения на его основе высокоскоростных ADSL-систем передачи данных по двухпроводной линии с частотным разделением принимаемого (downstream) и передаваемого (upstream) информационных потоков.

Конкретная реализация алгоритма QAM определяет значения следующих параметров:

· размерность модуляционного символа (log2 количества точек созвездия) N [бит]

· значение символьной скорости fSymbol [кбод/сек]

· центральная частота (central rate fc)

Значение информационной скорости V (скорости передачи данных для алгоритма QAM) определяется следующим соотношением:

V = N * fSymbol

Проект стандарта T1.413 ANSI предписывает использование следующих значений символьных скоростей в ADSL-системах передачи данных:

DOWNSTREAMfSymbol UPSTREAM fSymbol
136 кбод170 кбод340 кбод680 кбод952 кбод1088 кбод 85 кбод136 кбод

Таким образом, при использовании символьной скорости 136 кбод, алгоритм QAM-256 позволяет обеспечить передачу данных со скоростью 1088 Кбит/сек.

Центральная частота fc для конкретной реализации алгоритма модуляции определяется соотношением:

fн + f symbol /2 £ fc £ fв - f symbol /2 ,где

fн - нижняя граница спектра модулированного сигнала

f symbol - значение символьной скорости

fв- верхняя граница спектра модулированного сигнала

Энергетический спектр сигнала.

Параметры огибающих линий (масок) энергетических спектров модулированных сигналов ADSL приведены в стандарте T1.413 ANSI. Использование этих масок обеспечивает необходимый уровень электромагнитной совместимости сигналов различной природы, которые передаются по разным парам одного кабеля. Независимо от типа используемого алгоритма модуляции, энергетический спектр модулированного сигнала не должен выходить за пределы установленной маски.

На рисунке 7 представлено схематическое изображение маски для исходящего (UPSTREAM) потока ADSL.

Рисунок 7

Характерные для данной маски частотные диапазоны приведены в таблице:

fнач (KHz) fкон (KHz) PSD (dB/Hz)
1 0 4 -97.5
2 25.875 138 -34.5
3 3093 4545 -90

Диапазон 1 не используется для передачи данных в технологии ADSL. В диапазоне 2 должна быть размещена основная часть спектра полезного сигнала. Диапазон 3 не используется для передачи исходящего потока данных ADSL и предназначен для приема входящего потока.

Примерно такую же форму имеет маска для входящего (DOWNSTREAM) потока ADSL.


Рисунок 8

Характерные для маски входящего потока ADSL частотные диапазоны приведены в таблице:

fнач (KHz) fкон (KHz) PSD (dB/Hz)
1 0 4 -97.5
2 4 138 -92.5-44.2
3 138 1104 -36.5

Диапазон 1 не используется для передачи данных в технологии ADSL. Диапазон 2 не используется для приема входящего потока данных ADSL и предназначен для передачи исходящего потока. В диапазоне 3 должна быть размещена основная часть спектра полезного сигнала.

Алгоритм модуляции QAM может быть использован для формирования линейного сигнала VDSL- устройств. На рисунке 9 представлено схематическое изображение спектра сигнала QAM-16, который обеспечивает передачу данных со скоростью 26 Мбит/сек - (6.5 Мбод).

Рисунок 9

Представленные на графике результаты были получены на двухпроводной линии длиной 1300 метров (4000 футов) при диметре провода 0.5 мм (26 AWG). На линии имелось одно пассив-ное ответвление (bridge-tap) длиной около 10 метров (30 футов). Наличие пассивных отводов на линии при использовании алгоритма модуляции QAM является одним из факторов, которые приводят к существенному уменьшению значения SNR для принимаемого сигнала. На приведенной выше диаграмме красным пунктиром отмечено искажение спектра модулированного колебания - провал на частоте fс (5.4 МГц), которое вызвано именно наличием пассивного ответвления на линии.

Помехоустойчивость алгоритма КАМ.

Помехоустойчивость ал­горитма QAM обратно пропорциональна его спектральной эффектив­ности. Воздействие помех приводит к возникнове­нию неконтролируемых изменений амплитуды и фазы передаваемого по линии сигнала. При уве­личении числа кодовых точек на фазовой плоско­сти расстояние между ними (P) уменьшается и, следовательно, возрастает вероятность ошибок при распознавании вектора Zm* на приемной стороне. Предельный уровень допустимых амплитудных и фазовых искажений QAM-модулированного сигнала представляет собой круг диаметром P (рис. 10).

Рисунок 10

Центр этого круга совпадает с узлом квадратурной сетки на фазовой плоскости. Заштрихованные области на рисунке соответствуют координатам искаженного вектора QAM-модулированного ко­лебания при воздействии на полезный сигнал помехи, относительный уровень которой опре­деляется соотношением 20dB £ SNR £30dB.

На диаграмме, которая приведена на рисунке 11, сплошными линиями представлены зависимости ожидаемого значения BER (Bit Error Rate - вероятность ошибок) от величины SNR для различных вариантов алгоритма QAM.

Использование дополнительного кодирования (пунктирные линии), например, по алгоритму Рида-Соломона (Reed-Solomon) позволяет повысить помехоустойчивость модулированного сигнала.

Достоинства алгоритма.

Алгоритм квадратурной амплитудной модуляции является относительно простым в реализации и в то же время достаточно эффективным алгоритмом линейного кодирования xDSL-сигналов. Современные реализации этого алгоритма обеспечивают достаточно высокие показатели спектральной эффективности. Как уже было отмечено выше, ограниченность спектра и относительно высокий уровень помехоустойчивости QAM-модулированного сигнала обеспечивают возможность построения на основе этой технологии высокоскоростных ADSL и VDSL-систем передачи данных по двухпроводной линии с частотным разделением принимаемого и передаваемого информационных потоков.

Недостатки алгоритма.

К недостаткам алгоритма можно отнести относительно невысокий уровень полезного сигнала в спектре модулированного колебания. Этот недостаток является общим для алгоритмов гармонической амплитудной модуляции и выражается в том, что максимальную амплитуду в спектре модулированного колебания имеет гармоника с частотой несущего колебания. Поэтому данный алгоритм в чистом виде достаточно редко используется на практике. Гораздо более широкое распространение получают алгоритмы, которые используют основные принципы QAM и в то же время свободны от его недостатков (например - алгоритм CAP).

Треллис-кодирование. [4]

Треллис-кодирование.

Рассмотрим принципы треллис-кодирования на основе простейшего кодера, состоящего из двух запоминающих ячеек и элементов XOR (рис. 11).

Рисунок 11

Пусть на вход такого кодера поступает со скоростью k бит/с последовательность бит 0101110010. Если на выходе кодера установить считывающую ячейку, работающую с вдвое большей частотой, чем скорость поступления бит на вход кодера, то скорость выходного потока будет в два раза выше скорости входного потока. При этом считывающая ячейка за первую половину такта работы кодера считывает данные сначала с логического элемента XOR 2, а вторую половину такта — с логического элемента XOR 3. В результате каждому входному биту ставится в соответствие два выходных бита, то есть дибит, первый бит которого формируется элементом XOR 2, а второй — элементом XOR 3. По временной диаграмме состояния кодера нетрудно проследить, что при входной последовательности бит 0101110010 выходная последовательность будет 00 11 10 00 01 10 01 11 11 10.