Смекни!
smekni.com

Разработка пакета программ для расчета фазированной антенной решетки (стр. 11 из 15)

Согласно [23], предельно допустимые значения напряжения прикосновения и тока составляют, соответственно 20 В и 6 мА при продолжительности воздействия тока более 1 сек. Поэтому, необходимо предусмотреть защитное заземление, которое обеспечило бы защиту людей от прикосновения к нетоковедущим частям (корпуса измерительных приборов), которые могут оказаться под напряжением в результате повреждения изоляции.

Стекание тока в землю происходит только через проводник, находящийся с нею в непосредственном контакте. Такой контакт обеспечивается проводником или группой соединенных между собой проводников. Одиночный проводник, находящийся в контакте с землей называется одиночным заземлителем или заземляющим электродом, а заземлитель, состоящий из нескольких параллельно соединенных электродов, называется групповым или сложным заземлителем.

По условиям безопасности заземление должно обладать сравнительно малым сопротивлением, обеспечить которое можно путем увеличения геометрических размеров одиночного заземлителя или применения группового заземлителя. В нашем случае, будем использовать групповой заземлитель.

Коэффициент использования проводимости заземления или просто коэффициент использования, есть отношение действительной проводимости группового заземлителя

к наибольшей возможной его проводимости
, т.е. при бесконечно больших расстояниях между электродами:

(6.1)

При использовании группового заземлителя определить коэффициент использования расчетным путем сложно. Поэтому, при расчете заземляющих устройств, значения η берутся из таблицы 6.1, составленной на основании опытов [24].

Табл. 6.1

η Отношение расстояний между вертикальными электродами к их длине Число вертикальных электродов
2 4 6 10 20
ηв 1 0.85 0.73 0.65 0.59 0.48
2 0.91 0.83 0.77 0.74 0.67
3 0.94 0.89 0.85 0.81 0.76
ηг 1 0.85 0.77 0.72 0.62 0.42
2 0.94 0.80 0.85 0.75 0.56
3 0.96 0.92 0.88 0.82 0.68

Здесь: ηв – коэффициент использования вертикальных электродов группового заземлителя (труб, уголков и т.п.) без учета влияния полосы связи (электроды размещены в ряд);

ηг – коэффициент использования горизонтального полосового электрода, соединяющего вертикальные электроды.

Проводимость группового заземлителя получается путем суммирования проводимостей заземлителей обоих типов (вертикального и горизонтального), поскольку они работают параллельно:

(6.2)

Выражение для сопротивления группового заземлителя запишется в виде:

(6.3)

где n – число вертикальных электродов;

- сопротивление вертикального стержневого электрода;

– сопротивление горизонтального полосового электрода.

Формула для вычисления сопротивлений одиночных заземлителей растеканию тока в однородном грунте записываются в виде:

, (6.4)

где 1 – длина электрода;

s – площадь сечения электрода;

ρ – удельное сопротивление материала электрода.

Выполним заземляющее устройство в виде группового заземлителя, состоящего из трех стержневых электродов, расположенных на расстоянии r = 4 м.

1. Возьмем стержневой электрод длиной l = 5 м с круглым сечением, диаметр которого D = 10 мм. Стержень выполнен из стали, удельное сопротивление которой составляет

Ом/м. Рассчитаем сопротивление вертикального электрода:

2. Горизонтальная полоса имеет следующие габаритные размеры:

длина полосы 1 = 12 м, длина сечения – а = 1 см, ширина сечения – b = 1 мм.

Горизонтальный электрод сделан из меди, удельное сопротивление которой равно

Ом/м. Вычислим сопротивление горизонтальных электродов:

Отношение расстояния между вертикальными электродами r= 4 м к их длине 1 = 5 м составит r/1 ≈ 1, откуда по таблице 6.1 находим значения коэффициентов использования вертикальных и горизонтальных электродов, которые составляют соответственно ηв = 0,85, ηг = 0,85. Теперь можем вычислить сопротивление всего группового заземлителя:

Для электроустановок напряжением до 1000 В в сети с изолированной нейтралью, сопротивление заземляющего устройства должно быть не более 4 Ом.

Сопротивление группового заземлителя значительно меньше допустимого, а это означает, что рассчитанное заземляющее устройство обеспечит защиту людей от поражения электрическим током в случае повреждения изоляции.

Питание к рабочему столу подводится электропроводами сечением 3 мм2. Протяженность провода на пути распределительный щиток – электророзетка не превышает 20 м. Провода подводящие напряжение к щитку имеют сечение (2х6 мм2). Суммарное сопротивление проводов не превышает 1,5 Ом, что обеспечивает ток короткого замыкания на уровне 146 А. Защита сети от перегрузок должна осуществляется автоматом типа ОП‑6, рассчитанным на ток 25 А, который значительно меньше тока короткого замыкания.


6.2.2 Пожаробезопасность рабочего места

Пожарная безопасность помещений, имеющих электрические сети, регламентируется [17] и [18]. Рабочее место оператора ПЭВМ оборудовано в помещении, которое соответствует категории «Д» пожарной безопасности (негорючие вещества и материалы в холодном состоянии) по [19].

Материалы, применяемые для ограждающих конструкций и отделки рабочего помещения должны быть огнестойкими. Для предотвращения возгорания в зоне расположения ЭВМ обычных горючих материалов (бумага) и электрооборудования, необходимо приниять следующие меры:

· в помещении должны быть размещены углекислотные огнетушители типов ОУ‑2, ОУ‑5, ОУ‑8. в качестве вспомогательного средства тушения пожара могут использоваться гидрант или устройства с гибкими шлангами. Рабочее помещение имеет площадь 12м2. Согласно [25] на каждые 50м2 должен приходиться один огнетушитель. Таким образом, для обеспечения помещения средствами пожаротушения необходим один огнетушитель.

· для непрерывного контроля за помещением необходимо установить систему обнаружения пожаров, для этого можно использовать комбинированные извещатели типа КИ‑1 из расчета один извещатель на 100 м2 помещения.

· к работе на ПЭВМ допускаются только пользователи, прошедшие инструктажа по безопасности труда и пожарной безопасности

· в помещении должна быть инструкция с правилами пожарной безопасности и план противопожарных мероприятий;

· для помещения быть разработан план эвакуации персонала в случае возникновения пожара;

· должен быть назначен ответственный за противопожарную безопасность;

· монитор и системный блок ПЭВМ дожны быть установлены вдали от источников тепла (например, батареи центрального отопления), прямые солнечные лучи не должны попадать на экран дисплея;

· необходимо использовать модели ПЭВМ, у которых в корпусе имеются вентиляционные отверстия и охлаждающий вентилятор.

6.2.3 Микроклимат рабочего места

В соответствие с [14] помещение с ПЭВМ для поддержания микроклимата оборудовано системой отопления и кондиционирования воздуха. В помещении обеспечиваются оптимальные параметры микроклимата, представленные в табл.6.2.Для повышения влажности воздуха в помещении с ПЭВМ применяется увлажнители воздуха, заправляемые ежедневно дистиллированной или прокипяченнои питьевой водой. Регулярно осуществляется проветривание, что обеспечивает улучшение качественного состава воздуха, в том числе и аэроионный режим.

Табл. 6.2

Период года Температура воздуха, ºСне более Относительная влажность воздуха, % Скорость движениявоздуха, м/с
Холодный 22–24 40–60 0,1
Теплый 23–25 40–60 0,1

Уровни положительных и отрицательных аэроионов в воздухе помещения с ПЭВМ соответствует нормам, приведенным в табл. 6.3.Содержание вредных химических веществ в воздухе помещения не превышает среднесуточных концентраций для атмосферного воздуха.

Табл. 6.3

Уровни Число ионов в 1 см куб. воздуха
n+ n-
Минимально необходимые 400 600
Оптимальные 1500–3000 3000–5000
Максимально допустимые 50000 50000

6.2.4 Освещенность рабочего места

В соответствие с [14] помещение с ПЭВМ должны имеет естественное и искусственное освещение.