Смекни!
smekni.com

Создание информационно-справочной подсистемы САПР конструкторско-технологического назначения. Внешние соединители (стр. 4 из 8)

Рисунок 2.15 – Механический соединитель Corelink производства AMP

Достаточно высокие требования предъявляются также к персоналу, производящему работы по сварке оптических волокон. Часто этими же лицами производится наладка и обслуживание аппаратов для сварки оптических волокон (очистка направляющих поверхностей и зажимов, замена электродов и проч.), для чего требуются специалисты с высоким уровнем квалификации.


Рисунок 2.16 – Механический соединитель ленточных элементов оптических волокон производства Lucent Technologies

Рисунок 2.17 – Механический соединитель Fibrlok II производства 3M

Рисунок 2.18 – Механический соединитель Fibrlok производства 3M

Всех этих сложностей можно избежать, применяя механические соединители оптических волокон. Конструкция оптических соединителей относительно проста. Основными узлами являются направляющие для двух оптических волокон и устройство фиксации волокон. Внутреннее пространство заполняется тиксотропным гелем для защиты открытых участков оптических волокон от воздействия влаги. Одновременно гель обладает иммерсионными свойствами - его показатель преломления близок к показателю преломления сердцевины волокна.

Процедура монтажа оптических соединителей является частью процедуры монтажа промежуточного или оконечного устройства - кабельной муфты, бокса или стойки. Размеры и форма оптических соединителей позволяют устанавливать их в кассету муфты или бокса аналогично сросткам оптических волокон, полученных путем сварки.

Процедура монтажа включает в себя следующие технологические операции:

• разделка кабелей;

• очистка оптических волокон от гидрофобного геля (при его наличии);

• снятие буферных покрытий соединяемых оптических волокон на участках длиной, рекомендуемой производителями оптических соединителей конкретного типа;

• скалывание оптических волокон;

• проверка качества скола волокон;

• введение соединяемых волокон в отверстия с направляющими;

• позиционирование волокон в соединителе для достижения оптимальных параметров соединения;

• фиксация оптических волокон в соединителе;

• тестовые измерения соединения.

Особое место среди оптических механических соединителей занимает RMS (Rotary Mechanical Splice) как наиболее сложный среди аналогов. Процесс его монтажа наиболее трудоемок, однако он позволяет достичь наименьших потерь при соединении одномодовых волокон. В отличие от остальных соединителей, где величина потерь главным образом зависит от качества скола торцевых поверхностей оптических волокон, этот соединитель позволяет юстировать волокна простым вращением вокруг своей оси стеклянных втулок, удерживающих подготовленные оптические волокна, и добиваться наилучших результатов.


Рисунок 2.19 – Механический соединитель RMS производства AT&T

Рисунок 2.20 – Механический соединитель ленточных элементов оптических волокон производства Sumitomo

Рисунок 2.21 – Механические соединители производства Fujikura

Следует отметить, что применение механических соединителей является наиболее быстрым способом соединения оптических волокон. При этом вносимое затухание практически не отличается от затухания, создаваемого сварным соединением. Достаточно устойчивое функционирование механических соединителей в процессе эксплуатации позволяет уже сегодня рекомендовать их для широкого внедрения на телекоммуникационных сетях с невысокими требованиями к качеству соединений, а также в случаях, когда использование аппарата для сварки оптических волокон технологически затруднено или вообще невозможно. В дальнейшем статистика технической эксплуатации, а также совершенствование материалов компонентов механических соединителей, вероятно, определит их более широкое применение для строительства телекоммуникационных волоконно-оптических линий различных уровней.

Обращает на себя внимание тот факт, что механические соединители оптических волокон условно допускают однократное использование, однако на практике встречаются ситуации их многократного применения. Производители гарантируют качество соединения оптических волокон при повторном монтаже соединителя не более 2-3 раз, однако при повторном наполнении внутреннего пространства иммерсионным гелем (в тех конструкциях, где это предусмотрено) такие соединители использовались многократно без ущерба для качества стыков. Некоторыми производителями механических соединителей разработаны механизмы фиксации, предусматривающие использование специального ключа для открытия фиксатора.

Сегодня использование механических соединителей наиболее удобно при проведении аварийного ремонта волоконно-оптическихлиний для технологической операции организации временной вставки.

2.3.2 Малогабаритные оптические соединители

Многократно возросшие объемы прокладки оптических кабелей, рост емкости кабелей и оптических кроссов выдвигают новые требования ко всем компонентам оптических сетей, в том числе и к оптическим соединителям (ОС).

Широко используемые в волоконно-оптических системах ОС типа FC, ST, SC обладают одним существенным недостатком — имеют большие габаритные размеры. Уменьшение габаритов оптических коннекторов является актуальной задачей как в магистральных линиях связи, так и в локальных сетях и СКС. Малогабаритные ОС позволяют эффективно увеличивать емкость оптических устройств, уменьшать трудоемкость инсталляции и улучшать качество обслуживания ВОЛС.

Именно эти факторы и привели к разработке и появлению на рынке нового типа оптических соединителей — SFF-соединителей (Small Form Factor). При разработке ставилась задача обеспечить повышение плотности монтажа оптических сетей при снижении стоимости соединителей.

В настоящее время существует целый ряд SFF-соединителей: MT-RJ, LC, VF-45, Opti-Jack, MU, LX.5, E-2000 и другие. Однако явного лидера в разработке и производстве малогабаритных соединителей нет. Более того, сложно прогнозировать, какой из вариантов коннекторов станет будущим стандартом.

Основные типы малогабаритных соединителей:

Соединитель Opti-Jack (Fiber Jack) был разработан фирмой PANDUIT в 1996 году и был первым ОС, выполненным в форм-факторе RJ-45 (рис. 2.13). В его конструкции использованы прецизионные наконечники (феррулы), в которых закрепляется оптическое волокно. Использование широко распространенных наконечников обеспечивает высокие параметры ОС. Для снижения стоимости многомодовые Opti-Jack изготавливаются с пластиковыми феррулами.

Рисунок 2.22 – Соединитель Opti-Jack

Соединитель E-2000. Разработчик — фирма DIAMOND. Коннектор E2000 имеет “фирменный” составной наконечник D=2,5 мм, может быть дуплексным за счет попарной фиксации коннекторов (рис. 2.14). Соединитель E2000 имеет защитную крышку, закрывающую наконечник коннектора в неподключенном состоянии. Соединитель примерно в 2 раза компактнее, чем SC, и широко используется в системах кабельного телевидения, где де-факто уже стал стандартом.

Рисунок 2.23 – Соединитель E-2000

Соединитель LC. В конце 1995 г. фирма LUCENT TECHNOLOGIES предложила новый ОС LC (Link-Control). В основе конструкции лежит традиционный способ юстировки волокон с наконечниками и центратором (рис. 2.24). Диаметр наконечника уменьшен до 1,25 мм, что позволило уменьшить габариты соединителя. Использование керамических наконечников позволило сохранить высокие параметры традиционных ОС. Дуплексность LC достигается попарной фиксацией коннекторов.

Рисунок 2.24 – Соединитель LC

Соединитель MU. Разработчик соединителя — компания NTT. Соединитель MU напоминает уменьшенный коннектор SC-типа (рис. 2.25). В конструкции использованы керамические наконечники типоразмера 1,25 мм. От коннектора SC этот тип ОС отличает также более простая конструкция и меньшее число деталей. Коннекторы и розетки MU могут объединяться в блоки до 16 соединителей и использоваться в качестве разъемного соединения печатных плат врубного типа.