регистрация / вход

Функциональные устройства телекоммуникаций

Принципиальная схема предварительного каскада с источником сигнала и последующим каскадом. Выбор типа транзистора, исходя из заданного режима его работы и частоты верхнего среза усилителя. Расчет параметров малосигнальной модели биполярного транзистора.

Контрольное задание №1

Исходные данные (Вариант №4):

Еп, В 9
I0K, мА 12
U0КЭ , В 4
EГ , мВ 50
RГ , кОм 0,6
fН , Гц 120
fВ , кГц 10
M, дБ 1
tСМИН , о C 0
tСМАКС , о C 35

Изобразим полную принципиальную схему предварительного каскада элементами связи с источником сигнала и последующим каскадом.

Выберем тип транзистора исходя из заданного режима его работы и частоты верхнего среза усилителя fВ

Еп=9В; I0K =12 мА; fВ =10кГц


Возьмем низкочастотный транзистор малой мощности. Например ГТ108А [3]. Это германиевый сплавной транзистор p-n-p типа.

Выпишем его основные параметры из справочника [3]:

Параметры Режим измерения ГТ108А
h21ЭМИН UКЭ =-5В; IЭ =1 мА; tС =20 о C 20
h21ЭМАКС 55
СК, пФ UКБ =-5В; f=465 кГц 50
τК, нс UКБ =-5В; f=465 кГц 5
fh21Э, МГц UКЭ =-5В; IЭ =1 мА 0,5
IКБО, мкА UКБ =-5В; tС =20 о C 15

Рассчитаем параметры малосигнальной модели биполярного транзистора [1].

Среднее значение коэффициента передачи тока равно:

(1.1)

h 21Э =33,2.

Выходная проводимость определяется как

(1.2)

h 22Э =1,2*10-4 См.

Здесь UA — напряжение Эрли, равное 70... 150 В у транзисторов типа р-n-р.

Объемное сопротивление области базы rБ можно определить из постоянного времени τК коллекторного перехода:


(1.3)

rБ =100 Ом

Дифференциальное сопротивление эмиттерного перехода определяется по формуле:

(1.4)

r Б’Э =74 Ом

где =2,2 Ом дифференциальное сопротивление эмиттера;

0,026 В — температурный потенциал при Т= 300 К;

m=1 — поправочный коэффициент, принимаемый примерно равным 1 для германиевых транзисторов.

Входное сопротивление транзистора:

(1.5)

h 11Э =174 Ом

Емкость эмиттерного перехода равна:

(1.6)

СБ’Э =4,3 нФ

Проводимость прямой передачи:


(1.7)

Y21Э =0,191 См

Рассчитаем параметры эквивалентной схемы биполярного транзистора по дрейфу [1].

Минимальная температура перехода транзистора

(1.8)

где PK — мощность, рассеиваемая на коллекторе транзистора;

(1.9)

PK =48 мВт,

RПС =0,5 °С/мВт,

tПmin = 14,4°С.

Максимальная рабочая температура перехода:

tПmax = tСmax + RПС PK (1.10)

tПmax =49,4°С

Значение параметра h/ 21Э транзистора при минимальной температуре перехода:

(1.11)

h/ 21Э =26,4.


Значение параметра h// 21Э транзистора при максимальной рабочей температуре перехода:

(1.12)

h// 21Э =52,3.

Изменение параметра Δh21Э в диапазоне температур:

(1.13)

Δh21Э =26

Изменение обратного тока коллектора в диапазоне температур:

(1.14)

ΔIКБ0 =81 мкА,

где α — коэффициент, принимаемый для германиевых транзисторов в интервале 0,03— 0,035

Эквивалентное изменение тока в цепи базы в диапазоне температур:

(1.15)

ΔI0 =0,4 мА

Эквивалентное изменение напряжения в цепи базы, вызванное изменением температуры окружающей среды:


(1.16)

ΔU0 =0,12В

Рассчитаем элементы эммитерной стабилизации тока покоя транзистора:

Зададимся падением напряжением на сопротивлении RЭ в цепи эмиттера транзистора равным

U =0,2Eп=1,8В (1.17)

Определим сопротивление этого резистора:

(1.18)

RЭ =150 Ом

а также сопротивление резистора в цепи коллектора:

(1.19)

RК =267 Ом

Округлим их значения до ближайших стандартных, они будут равны соответственно 150 Ом и 270 Ом

Зададимся допустимым изменением тока коллектора в диапазоне температур из условия

(1.20)

ΔI =0,5I0K =6 мА


При этом необходимо учитывать, что меньшее значение изменения этого тока приводит к увеличению тока, потребляемого резистивным делителем в цепи базы, к снижению входного сопротивления и ухудшению КПД каскада.

Исходя из требуемой стабилизации тока покоя каскада, определяют эквивалентное сопротивление в цепи базы транзистора:

(1.21)

RБ =4,2 кОм (стандартная величина – 4,3 кОм)

Рассчитаем ток базы в рабочей точке:

(1.22)

IОБ =0,36 мА

Пусть U0БЭ =0,3 В

Напряжение на нижнем плече резистивного делителя в цепи базы:

(1.23)

URБ2 =2,1 В

Сопротивление верхнего плеча резистивного делителя в цепи базы:

(1.24)

RБ1 =10 кОм (стандартная величина – 10 кОм)


Сопротивление нижнего плеча делителя в цепи базы:

(1.25)

RБ2 =4,2 кОм (стандартная величина – 4,3 кОм)

Входные сопротивления рассчитываемого RВХ и последующего RВХ2 = RН каскадов:

(1.26)

RВХ1 =167 Ом

Выходное сопротивление каскада:

(1.27)

RВЫХ =260 Ом

Определим емкости разделительных (СР1 и СР2 ) и блокировочного (СЭ )конденсаторов. Эти конденсаторы вносят частотные искажения в области нижних частот примерно в равной степени. В связи с этим заданные на каскад частотные искажения МН (дБ) в децибелах целесообразно распределить поровну между данными элементами:

МНСР1НСР2НСЭ = 0,33 дБ


Емкость первого разделительного конденсатора:

(1.28)

СР1 =6,1 мкФ (стандартная величина – 6,2 мкФ)

Емкость второго разделительного конденсатора:

(1.29)

СР2 =11 мкФ (стандартная величина – 10 мкФ)

Емкость блокировочного конденсатора в цепи эмиттера:

(1.30)

где

(1.31)

М0 =7,7;

СЭ =238 мкФ (стандартная величина – 240 мкФ);

Сопротивление нагрузки каскада по переменному току:

(1.32)

=103 Ом


Коэффициент передачи каскада по напряжению:

(1.33)

КU =20

Сквозной коэффициент передачи по напряжению:

(1.34)

КЕ =4,2

Выходное напряжение каскада:

(1.35)

UВЫХ =213 мВ

Коэффициент передачи тока:

(1.36)

Ki =20

Коэффициент передачи мощности:

(1.37)

KP =383


Верхняя граничная частота каскада определяется по формуле:

(1.38)

где — эквивалентная постоянная времени каскада в области верхних частот.

Постоянную времени можно определить из выражения

(1.39)

где и — постоянные времени входной и выходной цепей соответственно.

Эти постоянные времени определяются по формулам

(1.40)

(1.41)

где С0 — эквивалентная входная емкость каскада,

Сн — емкость нагрузки.

Эквивалентная входная емкость каскада включает емкость перехода база — эмиттер и пересчитанную на вход емкость перехода база — коллектор Ск :

(1.42)

С0 =5,3 нФ;

=0,7 мкс; =0,5 мкс;

= 0,9 мкс.

fВ =180 кГц.

Определим частотные искажения в области верхних частот

(1.40)

МВ =0,013

и сравним их с заданным значением М. Т.к. условие выполняется, т.е. МВ (дБ)<М(дБ), следовательно расчет произведен верно.


Контрольное задание №2

тип схемы: 7;

тип транзистора: p-n-p - КТ363Б

Выпишем основные параметры заданных транзисторов:

КТ363Б
h21Эmin 40
h21Эmax 120
|h21Э | 15
fизм, МГц 100
τK , пс 5
CK , пФ 2

Eг=1мВ; fc=10кГц; Rг=1кОм; Rн=1кОм; Сн=100пФ; Ср2=10мкФ.

Принципиальная схема анализируемого каскада с подключенными к ней источником сигнала и нагрузкой имеет вид:

Рассчитаем режим работы транзисторов по постоянному току, пусть Еп=10 В.

Расчет схемы по постоянному току проводится в следующем порядке. Рассчитаем ток делителя в базовых цепях транзисторов:

(2.1)

Определить потенциалы баз транзисторов:

(2.2)

(2.3)

Найдем потенциалы эмиттеров транзисторов:

(2.5)

(2.6)

Напряжение U0БЭ выбирается в интервале 0.5...0,7 В для кремниевых транзисторов, выберем U0БЭ =0,5В.

Рассчитаем ток в резисторе, подключенном к эмиттеру первого транзистора:

(2.7)

Рассчитаем ток коллектора в рабочей точке, для этого найдем сначала найдем среднее значение коэффициента передачи тока:


(2.8)

h21Э =69,

тогда:

(2.9)

(2.10)

Определим напряжение на коллекторе в рабочей точке:

(2.11)

(2.12)

По результатам расчета статического режима определяются параметры моделей первого и второго транзисторов:

Выходная проводимость определяется как

(2.13)

h22 1=1,3*10-5 См, h22 2=1,2*10-5 См.


Здесь UA — напряжение Эрли, равное 100... 200 В у транзисторов типа n-р-n. Примем UA =100В.

Предельная частота усиления транзистора по току определяется по единичной частоте усиления fТ :

(2.14)

Граничная частота fТ находится по формуле:

(2.15)

fТ1,2 =1,5 ГГц;

=22 МГц.

Объемное сопротивление области базы rБ можно определить из постоянной времени τК коллекторного перехода транзистора, приводимой в справочниках:

(2.16)

rБ1,2 =2,5 Ом.

Дифференциальное сопротивление эмиттерного перехода определяется по формуле:

(2.17)

rБ’Э1 =2,2 кОм, rБ’Э2 =2,2 кОм.

где дифференциальное сопротивление эмиттера;

0,026 мВ — температурный потенциал при Т= 300 К;

m — поправочный коэффициент, принимаемый примерно равным 1.5 для кремниевых транзисторов.

rЭ1 =31 Ом, rЭ2 =31 Ом.

Емкость эмиттерного перехода равна:

(2.18)

СБ’Э1 =3,4 пФ; СБ’Э2 =3,3 пФ

Определим коэффициент передачи по напряжению, входное и выходное сопротивление оконечного каскада, построенного по схеме с ОЭ.

Входное сопротивление транзистора VT2:

h11 2=rБ2 +rБ Э2 =2,2 кОм (2.19)

Входное сопротивление каскада:

(2.20)

Выходное сопротивление каскада:


(2.21)

Сопротивление нагрузки каскадапо переменному току:

(2.22)

Коэффициент передачи каскада по напряжению:

(2.23)

KU2 =16

Определим коэффициент передачи по напряжению, сквозной коэффициент передачи по напряжению, входное и выходное сопротивления входного каскада. При этом необходимо учитывать, что нагрузкой входного каскада является входное сопротивление оконечного каскада. Входной каскад построен по схеме с ОЭ.

Входное сопротивление транзистора VT2:

h11 1=rБ1 +rБ Э1 =2,2 кОм (2.24)

Входное сопротивление каскада:

(2.25)


Выходное сопротивление каскада:

(2.26)

(2.27)

Сопротивление нагрузки каскадапо переменному току:

(2.28)

Коэффициент передачи каскада по напряжению:

(2.29)

KU1 =32

Сквозной коэффициент передачи по напряжению:

(2.30)

Коэффициент передачи по напряжению всего усилителя определяется по формуле

KU = KU1 * KU2 =500 (2.31)

Сквозной коэффициент передачи по напряжению KE всего усилителя определяется аналогично:


KЕ = KЕ1 * KU2 =310 (2.32)

Входное сопротивление усилителя определяется входным сопротивлением входного каскада, а выходное – выходным сопротивлением оконечного каскада.

Постоянные времени в области нижних частот, связанные с разделительными конденсаторами Ср1, Ср2, определяются по формулам:

τН1 =Ср1*(Rг+ RВХ1 )=13 мс (2.33)

τН2 =Ср2*(RВЫХ2 + Rн)=20 мс (2.34)

Постоянная времени в области нижних частот, связанная с блокировочным конденсатором Сэ, определяется по формуле:

τН3 =СэRэ=30 мс (2.35)

Эквивалентная постоянная времени в области нижних частот равна

(2.36)

где τНi , τНj - эквивалентные постоянные времени каскада в области нижних частот связанные с i-м разделительным и j-м блокировочным и конденсаторами соответственно. τН =10 мс

Нижняя частота среза определяется по формуле:


(2.37)

В усилителе имеются три постоянных времени в области верхних частот, связанные с входными цепями входного и оконечного транзисторов и емкостью нагрузки:

τВi =Сi*Ri, (2.38)

где Сi – емкость i-го узла относительно общего провода,

Ri – эквивалентное сопротивление i-го узла относительно общего провода.

Входная емкость транзистора в схеме с общим эмиттером равна:

(2.39)

(2.40)

С01 = 70 пФ, С02 =37 пФ.

n (2.41)

(2.42)

(2.43)


Эквивалентная постоянная времени в области верхних частот равна

(2.44)

τВ =75 нс

Верхняя частота среза определяется по формуле:

(2.45)

fВ =2 МГц


Литература

1. Войшвилло. Г. В. Усилительные устройства / Г. В. Войшвилло. — М. : Радио и связь, 1983.

2. Титце, У. Полупроводниковая схемотехника. / У. Титце, К. Шенк. — М. : Мир, 1982.

3. Галкин, В. И. Полупроводниковые приборы : справочник / В. И. Галкин, А. Л. Булычев, В. А. Прохоров. — 2-е изд. — Минск : Беларусь, 1987.

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ  [можно без регистрации]

Ваше имя:

Комментарий