Смекни!
smekni.com

Модернизация телефонной сети в сельской местности Республики Казахстан (стр. 11 из 16)

q a – вероятность неисправного состояния а-го ребра.

Однако в реальных условиях часто пути зависимы, т.е. имеют общие ребра. Равенство (4.7) превращается в неравенство и дает верхнюю оценку надежности. Действительное значение получится, если выражение (4.7) после раскрытия скобок все показатели степени, большей единицы, заменить на единицу. Такая операця обозначается буквой Е:

ij= E
ijk
,
(9.9)

Схему сети сигнализации отображаем в виде графа(рисунок 4.3), вершины которого сопоставляются с пунктами сигнализации, а ребра со звеньями сигнализации.

В соответствии с формулой (9.9) определим надежность сети (надежности всех ребер одинаковы и равны Р=0,9):

1,2=(1-(1-рa)(1–pb pc pd pe pf pg ph))=

=(1- (1-0.9)(10.9*0.9*0.9*0.9*0.9*0,9*0,9))=0.959,

2,3=0.959,

3,4=0.959,

4,5=0.959,

5,6=0.959,

6,7=0.959,

7,8=0.959,

8,1=0.959,

9.3 Расчет экспериментального звена сигнализации

9.3.1 Расчет сигнальной нагрузки

Сигнальная нагрузка определяется по формуле:

eff
eff
eff
ineff
ineff·
ineff
/ 8000 Эрл, (9.10)

где

Neff – число удачных вызовов в секунду приходящихся на пучок каналов емкостью С;

Nineff – число не удачных вызовов в секунду приходящихся на пучок емкостью С;

Мeff – среднее число сигнальных единиц которыми обмениваются пункты сигнализации для обслуживания удачных вызовов, Мeff=1;

Мineff – среднее число сигнальных единиц которыми обмениваются пункты сигнализации для обслуживания не удачных вызовов, Мineff=6;

Leff – средняя длина сигнальной единицы в байтах для удачных вызовов, Leff=130 байт;

Lineff – средняя длина сигнальной единицы в байтах для не удачных вызовов, Lineff=150 байт;

Число удачных вызовов определяется:

eff
(9.11)

где

Xeff – отношение удачных вызовов к общему числу вызовов (от нуля до единицы);

С – число каналов обслуживаемых между звеном сигнализации;

А – средняя нагрузка в Эрлангах на разговорный канал;

Teff – среднее время занятия канала в секундах для удачного вызова; Teff=100 c.

Число неудачных вызовов:

(9.12)

где

Tineff – среднее время занятия канала в секундах для неудачного вызова,

Teff=12 c.

4.3.2 Рассчитаем сигнальную нагрузку от ЦС к АМТС:

STP1 –STP2

Средняя нагрузка на один разговорный канал:

(9.13)

где

А* – нагрузка на С каналов, А* = 17.5 Эрл.

С = 26 каналов, С определяется по первой формуле Эрланга.

Cогласно формуле (4.13) определяем:

Число удачных вызовов (4.14):

Число неудачных вызовов (9.15):

Нагрузка на звено сигнализации между STP1 – STP2 равна (9.15):

Вывод : Считается, что звено сигнализации работает нормально, если Y=0,2 Эрл. Если нагрузка больше, то звено дублируется. Следовательно необходимо одно звено сигнализации ОКС 7 для обслуживания СТС c. Уштерек.

9.3.3 Расчет надежности элементов станции

Понятие надежности программного обеспечения связано с тем, что вычислительный процесс обслуживания вызовов, организуемый управляющим устройством, базируется на сопоставлении информации о предыдущем состоянии системы, хранящейся в оперативном запоминающем устройстве, с информацией о текущем состоянии системы, хранящейся в периферийном

Следовательно, вероятность потери вызова на V - линейном пучке

Во второй модели также имеются два потока: простейший поток вызовов с интенсивностью нагрузки А=l/m и простейший поток моментов выхода из строя линий, причем последний имеет абсолютный приоритет и интенсивность отказов

. Вероятность потери источника вызова
, а полезная нагрузка
, где tm – средняя длительность обслуживания источника вызова. Так как обслуживание вызова может быть прервано, то
, а
. Рассмотрим систему распределения информации, которая в общем виде состоит из абонентских комплектов, коммутационного поля, комплектов соединительной линии и управляющих устройств. К управляющим устройствам относятся центральное и периферийные управляющие устройства.

Коммутационное поле имеет N входов, выходы КП разбиты на h направлений, пучок линий в j- м направлении содержит Vj линий

. Вызову, поступившему на вход системы, может потребоваться соединение с одной и только одной линией определенного для данного вызова направления, причем безразлично, с какой именно и по какому пути.

Вероятность того, что поступивший вызов i-го входа потребует соединения с j-м направлением может зависеть как от номера входа, так и от номера направления. Будем считать, что эта вероятность зависит только от j. В этих условиях характер потока вызовов в направлении сохранится, его интенсивность

. Структурные параметры КП предполагаются известными.

Элементы системы обладают конечной надежностью. Последнее означает, что на элементы системы воздействует поток неисправностей, который может быть примитивным или простейшим с интенсивностями нагрузки Аа.к для абонентских комплектов, Ак.э для коммутационных элементов КП, Ам.с для монтажных соединений, Ал для линейных (исходящих, входящих) комплектов, Аш для шнуровых комплектов, Ар для периферийных управляющих устройств, Ас для центрального управляющего устройства. Строго говоря, поток неисправностей всегда примитивный, однако в тех случаях, когда параметр потока неисправностей одного элемента весьма мал, а число элементов велико, характер потока близок к простейшему. Интенсивности восстановления неисправных элементов системы соответственно равны rа.к,…,rc.

Любой вызов обслуживается центральным управляющим устройством имеющем Vс – краткий резерв, которое, будучи в исправном состоянии, через Vр периферийных управляющих устройств получает информацию о поступлении вызова, его требованиях (например, номере направления, с которым нужно установить соединение или номере входа по которому поступил вызов), о состоянии самой системы, т.е. о том, какими путями в КП проходят уже установленные соединения и какие элементы системы исправны. Неисправные элементы системы обнаруживаются мгновенно. На основании такой информации УУ принимает и осуществляет решение об обслуживании данного вызова или отказе. Занятие соединительных путей в КП происходит случайно. В случае неисправности УУ все поступившие в систему вызовы теряются. При неисправности АК теряются вызовы, поступившие на этот комплект. Восстановление неисправных элементов системы, работающей в необслуживаемом режиме, начинается с момента прибытия ремонтно-восстановительной бригады.

За основу расчета примем тот факт, что реальная пропускная способность системы определяется числом только исправных элементов, образующих фактическую структуру системы. Таким образом, определение пропускной способности системы с ненадежными элементами, по сути, сводится к нахождению фактической структуры (или нагрузки) и расчету пропускной способности уже известными методами для систем с абсолютно надежными элементами.

Пусть N=n, j=h=1, Vj=V, s=1. Надежность линий (выходов из коммутаторов) и монтажных соединений внутри коммутатора намного выше надежности коммутационных элементов, т.е. Ал=Ам.с=0, Ак.э>0. Предположим, коммутационные элементы выходят из строя намного реже, чем поступают вызовы. Тогда дополнительные потери в коммутаторе (помимо тривиальных потерь в пучке линий) обусловлены только ненадежностью коммутационных элементов. Если dк.э – число исправных коммутационных элементов в произвольный момент в вертикали, к которой подключен источник вызова, pк.э – условные потери, а

– вероятность наличия точно dк.э исправных или V-dк.э неисправных коммутационных элементов вертикали, то по формуле полной вероятности