Смекни!
smekni.com

Основные параметры помехоустойчивого кодирования. Основные параметры помехоустойчивых кодов (стр. 1 из 2)

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

кафедра РЭС

реферат на тему:

«Основные параметры помехоустойчивого кодирования. Основные параметры помехоустойчивых кодов»

МИНСК, 2009


ОСНОВНЫЕ ПРИНЦИПЫ ПОМЕХОУСТОЙЧИВОГО КОДИРОВАНИЯ

Кодирование с исправлением ошибок, по существу, представляет собой метод обработки сигналов, предназначенный для увеличения надежности передачи по цифровым каналам. Хотя различные схемы кодирования очень непохожи друг на друга и основаны на различных математических теориях, всем им присущи два общих свойства. Одно из них - использование избыточности. Закодированные цифровые сообщения всегда содержат дополнительные, или избыточные, символы. Эти символы используют для того, чтобы подчеркнуть индивидуальность каждого сообщения. Их всегда выбирают так, чтобы сделать маловероятной потерю сообщением его индивидуальности из-за искажения при воздействии помех достаточно большого числа символов. Второе свойство состоит в усреднении шума. Эффект усреднения достигается за счет того, что избыточные символы зависят от нескольких информационных символов. Для понимания процесса кодирования полезно рассмотреть каждое из этих свойств отдельно.

Рассмотрим вначале двоичный канал связи с помехами, приводящими к тому, что ошибки появляются независимо в каждом символе и средняя вероятность ошибки равна Р=0,01. Если требуется рассмотреть произвольный блок из 10 символов на выходе канала, то весьма трудно выявить символы, которые являются ошибочными. Вместе с тем если считать, что такой блок содержит не более трех ошибок, то мы будем неправы лишь два раза на миллион блоков. Кроме того, вероятность, что мы окажемся правы, возрастает с увеличением длины блока. При увеличении длины блока доля ошибочных символов в блоке стремится к средней частоте ошибок в канале, а также, что очень важно, доля блоков, число ошибок в которых существенно отличается от этого среднего значения, становится очень малой. Простые вычисления помогают понять, насколько верным является это утверждение. Рассмотрев, например, тот же канал, вычислим вероятность того, что доля ошибочных символов превышает значение p, и построим график этой функции для нескольких значений длины блока.

Рис. 1. Вероятность того, что доля ошибочных символов e/N в блоке длиной N превышает р при вероятности Р e=0,01

Кривые на рис.1 показывают, что при обработке символов блоками, а не одного за другим можно уменьшить общую частоту ошибок. При этом потребуется, чтобы существовала схема кодирования, нечувствительная к ошибкам в некоторой доле символов блока и не приводящая при этом к потере сообщением своей индивидуальности, т. е. не приводящая к ошибочному блоку. Из графиков для различных длин блоков видно, какую именно долю ошибок нужно исправлять, чтобы получить заданную вероятность ошибки блока. Он показывает также, что при фиксированной вероятности ошибки блока доля ошибок, которые нужно исправлять, уменьшается при возрастании длины блока. Сказанное свидетельствует о резервах улучшения характеристик при усреднении шума и о том, что эти резервы возрастают при увеличении длины блока. Таким образом, длинные блоковые коды эффективнее коротких. После того как установлена целесообразность исправления ошибок в символах, возникает следующий логичный вопрос: как это сделать? Ключ лежит в избыточности. После некоторых размышлений читатель поймет, что при исправлении ошибок в сообщении, представляемом последовательностью из n двоичных символов, очень важно учесть, чтобы не все 2n возможных последовательностей представляли сообщения. В самом деле, когда каждая из возможных принятых последовательностей n символов представляет некоторое сообщение, нет никаких оснований считать, что одна последовательность является более правильной, чем любая другая. Продолжая рассуждать таким же способом, можно ясно увидеть, что для исправления всех наборов из t или менее ошибок необходимо и достаточно, чтобы каждая последовательность, представляющая сообщение, отличалась от последовательности, представляющей любое другое сообщение, не менее чем в 2t+1 местах. Например, для исправления всех одиночных или всех двойных ошибок в символах нужно, чтобы каждые две последовательности, представляющие разные сообщения, отличались не менее чем в пяти символах. Каждая принятая последовательность, содержащая два ошибочных символа и, следовательно, отличающаяся от посланной последовательности ровно в двух местах, будет всегда отличаться от всех других последовательностей, представляющих сообщения, не менее чем в трех местах. Число позиций, в которых две последовательности отличаются друг от друга, будем называть расстоянием Хемминга d между этими двумя последовательностями. Наименьшее значение d для всех пар кодовых последовательностей называется кодовым расстоянием и обозначается dmin. Поскольку dmin всегда должно быть на единицу больше удвоенного числа исправляемых ошибок, можно написать t=[(dmin-l)/2], где [ ] обозначает целую часть. Параметр t указывает, что все комбинации из t или менее ошибок в любой принятой последовательности могут быть исправлены.Имеются модели каналов, в которых значение t может быть больше указанного.

Пример. Рассмотрим код, состоящий из четырех кодовых слов 00000, 00111,11100 и 11011. Каждое кодовое слово используется для представления одного из четырех возможных сообщении. Поскольку код включает лишь небольшую долю всех 32 возможных последовательностей из пяти символов, мы можем выбрать кодовые слова таким образом, чтобы каждые два из них отличались друг от друга не менее чем в трех позициях. Таким образом, кодовое расстояние равно трем и код может исправлять одиночную ошибку в любой позиции. Чтобы провести процедуру декодирования при этом коде, каждой из 28 недопустимых последовательностей нужно поставить в соответствие ближайшую к ней допустимую последовательность. Этот процесс ведет к созданию таблицы декодирования, которая строится следующим образом. Вначале под каждым кодовым словом выписываем все возможные последовательности, отличающиеся от него в одной позиции. В результате получаем часть табл. 1, заключенную между штриховыми линиями. Заметим, что после построения этой части осталось воcемь последовательностей. Каждая из этих последовательностей отличается от каждого кодового слова не менее чем в двух позициях. Однако в отличие от других последовательностей эти восемь последовательностей нельзя однозначно разместить в таблице. Например, последовательностью можно поместить либо в первый, либо в четвертый столбец. При использовании этой таблицы в процессе декодирования нужно найти столбец, в котором содержится принятая последовательность, и а качестве выходной последовательности декодера взять кодовое слово, находящееся в верхней строке этого столбца.

Таблица 1. Таблица декодирования для кода с четырьмя словами

00000 1000001000001000001000001 11100 0110010100110001111011101 00111 1011101111000110010100110 11011 0101110011111111100111010
10001 10010 01101 01110 10110 10101 01010 01001

Причина, по которой таблица декодирования должна строиться именно таким образом, очень проста. Вероятность появления фиксированной комбинации из i ошибок равна Рte(1 -Рe)5-i Заметим что при Рe<1/2 (1 -Рe)5Pe(1 -Рe)4Рe2(1 -Рe)3...

Таким образом, появление фиксированной одиночной ошибки более вероятно, чем фиксированной комбинации двух ошибок, и т. д. Это значит, что декодер, который декодирует каждую принятую последовательность в ближайшее к ней по расстоянию Хемминга кодовое слово, выбирает в действительности то кодовое слово, вероятность передачи которого максимальна (в предположении, что все кодовые слова равновероятны). Декодер, реализующий это правило декодирования, является декодером максимального правдоподобия, и в указанных предположениях он минимизирует вероятность появления ошибки декодирования принятой последовательности. В этом смысле такой декодер является оптимальным. Это понятие очень важно, поскольку декодеры максимального правдоподобия часто используются для коротких кодов. Кроме того, параметры декодера максимального правдоподобия могут служить эталоном, с которым сравниваются параметры других, неоптимальных декодеров. Если декодирование ведется с помощью таблицы декодирования, то элементы таблицы можно расположить так, чтобы получить декодирование по максимуму правдоподобия. К сожалению, объем таблицы растет экспоненциально с ростом длины блока, так что использование таблицы декодирования для длинных кодов нецелесообразно. Однако таблица декодирования часто оказывается полезной для выяснения важных свойств блоковых кодов.

Множество кодовых слов в таблице декодирования является подмножеством (первой строкой таблицы декодирования) множества всех 2n последовательностей длиной n. В процессе построения таблицы декодирования множество всех последовательностей длиной n разбивается на непересекающиеся подмножества (столбцы таблицы декодирования). В случае когда код исправляет t ошибок, число Ne последовательностей длиной n в каждом подмножестве удовлетворяет неравенству

Ne>=1+n+Cn2+...+Cnt, (2)

где Cni - i-й биномиальный коэффициент.

Неравенство (2) следует непосредственно из того, что имеется ровно n различных последовательностей, отличающихся от данной последовательности в одной позиции, Cn2 последовательностей, отличающихся в двух позициях, и т. д. Как и в приведенном выше простом примере, после размещения всех последовательностей, отличающихся от кодовых в t или менее позициях, почти всегда остаются неразмещенные последовательности [отсюда неравенство в (2)]. Теперь можно связать избыточность кода c числом ошибок, которые им исправляются Заметим сначала, что число всех возможных последовательностей равно 2n. Каждый столбец таблицы декодирования содержит Ne таких последовательностей, поэтому общее число кодовых слов должно удовлетворять неравенству
Ne<=<2n/(1+n+Cn2+...+Cnt), (3)