Смекни!
smekni.com

Импульсный трансформатор (стр. 3 из 5)

Температура трансформатора должна быть в допустимых пределах. Так температура трансформаторного масла не должна превышать 95 градусов, температура обмоток – предельных допустимых температур для изоляционных материалов. Температура окружающего воздуха определяется условиями эксплуатации ИТ и может достигать 50 градусов. Площадь поверхности охлаждения каждого элемента конструкции, рассеивающего теплоту, должна быть достаточной для поддержания перепада температур в заданных пределах.

Главными источниками тепловыделения в ИТ являются МС и обмотки.

Теплота, выделяющаяся в МС, может передаваться как вдоль, так и поперек листов или лент. Вдоль листов благодаря высокой теплопроводимости трансформаторной стали теплота передается практически беспрепятственно. В поперечном направлении теплота передается в 5…15 раз хуже из-за относительно высокого теплового сопротивления межлистовой изоляции.

Из-за высокой частоты повторений импульсов и больших потерь на вихревые токи, ИТ обычно характеризуется большими тепловыми нагрузками поверхностей охлаждения МС.

В связи с тем, что обмотки в некоторой степени теплоизолируют МС, между ними и МС необходимо создавать охлаждающий масляный канал. По этой причине толщина изоляции между первичной обмоткой и МС оказывается, особенно в мощных ИТ, значительно большой, чем это необходимо для получения достаточной электрической прочности изоляции первичной обмотки. Это следует учитывать при конструктивном расчете ИТ. Увеличение толщины изоляции первичной обмотки имеет некоторое положительное значение, так как благодаря этому уменьшается емкость первичной обмотки. Для ИТ с небольшим коэффициентом трансформации, и особенно для понижающих напряжение ИТ, уменьшение емкости может быть важным фактором и должно учитываться при конструктивном расчете ИТ.

Вследствие значительного эффекта вихревых токов, особенно при импульсах малой длительности, основное количество теплоты выделяется в МС, и поэтому главные трудности вызывает теплоотвод именно в МС.

В целом можно констатировать, что охлаждение мощных ИТ представляет сложную техническую проблему, существенно сдерживающую применение ИТ в импульсных системах большой мощности. [2]


2. КОНСТРУКТОРСКИЕ РАСЧЕТЫ

Исходными данными для расчета импульсного трансформатора являются следующие величины:

- мощность в импульсе P2= 13000 (Вт);

- напряжение в импульсе U1 = 600, U2 = 1800 (В);

- сопротивление источника Ru= 30 (Ом);

- длительность импульса τu= 1.8·10-6 (c);

- частота следования импульсов fn=650 (Гц);

- коэффициент искажения плоской части импульса λ=0.04.

2.1 Определение средней мощности и токов трансформатора

Среднюю отдаваемую мощность импульсного трансформатора можно определить следующим образом:

Pср = fnτuP2 = 650·1.8·10-6·13000= 15.21(Вт) (2.1)

Определяем токи первичной и вторичной обмоток в импульсе:

13000/600=22 (А) (2.2)

13000/1800 = 7.22 (А) (2.3)

Эффективные, или действующие, значения токов первичной и вторичной обмоток импульсного трансформатора определяются из условия, что потери в этих обмотках при прохождении через них коротких прямоугольных импульсов тока обуславливается не только омическими сопротивлениями обмоток, но также влиянием поверхностного эффекта в проводах и влиянием токов наводки в них. С учетом этих явлений действующие значения первичного и вторичного импульсного трансформатора можно представить как:

= 22∙
1,43 (А), (2.4)

7,22
= 0.43 (А), (2.5)

где kн =2.4…2.8 – коэффициент, учитывающий ток наводки в проводах обмоток при прямоугольном импульсе токов; kп1 и kп2 – коэффициенты поверхностного эффекта в неизолированных медных проводах круглого сечения, которые предварительно можно принять в следующих пределах: для обмотки низкого напряжения kп1 = 1.2…1.6, а высокого напряжения kп2 = 1.1…1.4.

2.2 Тип импульсного трансформатора

Выбираем сердечник стержневого типа с обмотками, расположенными на одном стержне. Материал сердечника – горячекатаная листовая электротехническая сталь по ГОСТу 802-58 марки Э44. В качестве изоляции между листами сердечника трансформатора служат окислы кремния или магния и оксидная изоляция.

2.3 Выбор приращения и толщины листов материала сердечника

Выбираем априорно величину ΔВс = 0.2 (Тл), в зависимости от мощности и с учетом магнитных характеристик материала сердечника (ΔН=2,1 (А/см)) определяем магнитную проницаемость материала, по формуле (2.6).


= 0.2 / 2.1 = 0.095 (2.6)

Определяем постоянную времени контуров вихревых токов в сердечнике из условия

= 1.8·10-6 / 2 = 0.9 (мкс) (2.7)

(2.8)

где ρс= 0.6·10-4 – удельное электрическое сопротивление материала сердечника для горячекатаной стали марки Э44 (Ом·см2/см).

Определяем толщину листа сердечника:

=
= 0.18(см) (2.9)

2.4 Определение поперечного сечения стержня и средней длины магнитопровода сердечника трансформатора

Отношение поперечного сечения стержня Sc к длине магнитопровода lв трансформаторах стержневого типа находится в пределах (0.18…0.32). Выбираем Ψ=0.25. Определяем поперечное сечение стержня сердечника:

==
= 2.3(см2) (2.10)

Средняя длина магнитопровода определяется по формуле:

= 2.3 /0.25 = 9.2 (см) (2.11)

Поперечное сечение стержня и ярма импульсного трансформатора выполняются одинаковыми и прямоугольной формы, при этом соотношение β= bc/ac находится в диапазоне 1…2. Коэффициент заполнения сталью стержня выбирается в пределах kз=0.8…0.9. Выберем для данного случая kз=0.85 и β = 2. Определим размер поперечного сечения стержня:

=
= 1,2(см) (2.12)

Определяем размер поперечного сечения ярма:

=
= 1.55 (см) (2.13)

2.5 Определение числа витков обмоток трансформатора

Определяем число витков первичной обмотки:

=600·10-2·1.8 / 0.2·2.3 = 23 (2.14)

где τи – заданная длительность импульса, мкс.

Определяем число витков вторичной обмотки:


= 23
= 69 (2.15)

2.6 Определение сечения и диаметра проводов обмоток

При мощности в импульсе более киловатта поперечное сечение проводов обмоток выбирается по допустимой плотности тока. В малых импульсных трансформаторах наибольшая плотность тока по условиям допустимого нагрева может быть принята в пределах (2…3) А/мм2 при воздушном охлаждении. Принимаем для данного случая j1=2(А/мм2), j2=3(А/мм2).

Находим предварительные значения поперечных сечений проводов первичной и вторичной обмоток

= 1,43 / 2 = 0.715 (мм2). (2.16)

= 0.43 / 2 = 0.215 (мм2). (2.17)

Следовательно, диаметры проводов обмоток

соответственно равны d1=0.95 и d2=0.52. Находим окончательные значения поперечных сечений и диаметров проводов по ближайшим данным ГОСТа 6324-52

dи1= 1.020 (мм) – диаметр провода первичной обмотки в изоляции;

dи2=0.580 (мм) – диаметр провода вторичной обмотки в изоляции;

g1= 0.724 (мм2), g2= 0,22 (мм2) – поперечные сечения проводов первичной и вторичной обмоток.


2.7 Укладка обмоток и уточнение размеров окна сердечника

Для получения возможно меньшей индуктивности рассеяния и уменьшения распределенной емкости между обмотками импульсного трансформатора эти обмотки следует выполнять по возможности однослойными и малослойными. При размещении обмоток на одном стержне, занимаемая, ею по высоте длина составляет:

= 23· 0.1020= 2.346 (см) (2.18)

Расстояние от ярма определяется высшим напряжением обмоток и в данном случае равняется ε1=0.3 (см).

Определяем высоту окна сердечника трансформатора: