регистрация /  вход

Импульсный трансформатор (стр. 1 из 5)

Министерство образования и науки Украины

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА ПО КУРСОВОМУ ПРОЕКТИРОВАНИЮ

на тему:

“ИМПУЛЬСНЫЙ ТРАНСФОРМАТОР”

по дисциплине

“ЭЛЕМЕНТНАЯ БАЗА ЭЛЕКТРОННЫХ АППАРАТОВ”

2010


СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ОБЗОР АНОЛОГИЧНЫХ КОНСТРУКЦИЙ

1.1 Понятие импульсного трансформатора

1.2 Общие конструктивные схемы и классификация импульсных трансформаторов

1.3 Изоляция проводов и обмоток

1.4 Сердечник импульсного трансформатора

1.5 Тепловой режим импульсного трансформатора

2. КОНСТРУКТОРСКИЙ РАСЧЕТ

2.1 Определение средней мощности и токов трансформатора

2.2 Тип импульсного трансформатора

2.3 Выбор приращения и толщины материала сердечника

2.4 Определение поперечного сечения стержня и средней длины магнитопровода сердечника трансформатора

2.5 Определение числа витков обмоток трансформатора

2.6 Определение сечения и диаметра проводов обмоток

2.7 Укладка обмоток и уточнение размеров окна сердечника

2.8 Средние длины витков обмоток трансформатора

2.9 Масса меди и активные сопротивления обмоток

2.10 Потери в обмотках

2.11 Масса материала сердечника

2.12 Магнитные потери в сердечнике

2.13 Коэффициент полезного действия трансформатора

2.14 Намагничивающий ток трансформатора

2.15 Коэффициент плоской части импульса

2.16 Проверка трансформатора на нагревание

2.17 Параметры трансформатора и проверка искажения импульса

3. ВЫБОР МАТЕРИАЛОВ КОНСТРУКЦИИ

ЗАКЛЮЧЕНИЕ

ПЕРЕЧЕНЬ ССЫЛОК


ВВЕДЕНИЕ

Импульсные трансформаторы применяют в современных устройствах радиоэлектроники, летательных аппаратах, автоматике, установках связи, а также в других областях техники. Это связано с тем, что при проведении различных электрофизических экспериментов необходимы электрические токи, достигающие сотен килоампер при напряжениях до нескольких мегавольт.

Режим, когда мощность генерируется и потребляется в течение небольшого интервала времени, принято называть импульсным. Импульсы могут иметь разную форму, и характер последовательности импульсов также может быть разным. Мощности и напряжения импульсов могут изменяться в весьма широких пределах.

Часто рассматриваются импульсные режимы, в которых длительность импульса мала по сравнению с периодом их повторения, а форма близка к прямоугольной. Именно в таком режиме работают мощные импульсные устройства.

Для преобразования напряжений в импульсной технике широко применяется импульсный трансформатор, который служит для трансформации кратковременных периодически повторяющихся импульсов напряжения приблизительно прямоугольной формы порядка нескольких микросекунд и менее.

В данной работе будет произведено проектирование малого импульсного трансформатора.

Проектирование ИТ состоит в решении комплекса взаимосвязанных частных технических задач. К ним относятся: задача о принципиальной возможности реализации ИТ, удовлетворяющего требованиям в отношении искажений формы трансформированного импульса; выбор конструктивной схемы активной части и общей компоновки ИТ, схемы и конструкции обмоток, изоляционных, магнитных материалов, организация режима работы и режима охлаждения, расчет конструктивных параметров обмоток, изоляции, электромагнитных и тепловых режимов; выбор типовых элементов, оценка технико-экономических и функциональных показателей спроектированного ИТ.

Решаемые в процессе проектирования задачи отличаются противоречивостью. Так, например, любые изменения конструкции ИТ, направленные на уменьшение искажений фронта трансформированного импульса или увеличение его напряжения, приводят к снижению всех, без исключения, технико-экономических показателей ИТ.

Проектирование ИТ включает в себя следующие основные этапы: анализ исходных данных и патентно-информационный поиск с целью выявления, аналогов; оценку выполнимости требований; расчет электромагнитных параметров схемы замещения и установление принципиальной возможности или невозможности реализации ИТ с заданными параметрами искажений формы трансформированного импульса; выбор конструктивной схемы ИТ; расчет или выбор главных размеров, обмоток, числа витков; разработку мер по нормализации теплового режима; выбор конструкции и охлаждающих устройств; расчет, на основании которого вносятся необходимые изменения и уточнения; оценку технико-зкономических и функциональных показателей ИТ; разработку исходных данных.

Цель проектирования ИТ является выбор конструкции, отвечающей функциональным и эксплутационным требованиям и обеспечивающей получение приемлемых технико-экономических показателей.


1. ОБЗОР АНОЛОГИЧНЫХ КОНСТРУКЦИЙ

1.1 Понятие импульсного трансформатора

При помощи импульсных трансформаторов осуществляется повышение амплитуды напряжения импульса, согласование полных сопротивлений источника напряжений и нагрузки, изменение полярности импульсов.

Коэффициент полезного действия мощного ИТ может достигать 99%, поэтому потерями мощности не определяется принципиальная возможность применения ИТ. Но абсолютная величина потерь пропорциональна частоте повторения импульсов, и при увеличении частоты увеличивается тепловыделение и температура активных частей трансформатора. В связи с этим применение ИТ возможно только при частотах повторения не превышающих 10кГц. Масса и стоимость ИТ обычно меньше массы и стоимости генератора импульсов.

В целом, так же как и силовой трансформатор в промышленной электротехнике, ИТ оказывается практически незаменимым элементом в импульсной электротехнике, чем и обусловлено его широкое применение в импульсных установках.

Принципиальным фактором, определяющим возможность применения ИТ, является способность удовлетворять требованию возможно меньшего искажения передачи формы трансформируемых импульсов напряжения.

Эти искажения возникают как следствие процессов накопления и рассеяния электрической и магнитной энергии в принципиально неустранимых из системы генератор – ИТ – нагрузка (трансформаторной цепи) элементах. Такими элементами являются показанные на схеме замещения трансформаторной цепи (рис. 1.1) емкость контура Cк , емкости монтажа установки См1 и Cм2 , емкости нагрузки Cн , индуктивности монтажа Lм1 и Lм2 и не показанные на рисунке электромагнитные параметры ИТ – индуктивности рассеяния и намагничивания и емкости его обмоток. Вследствие того, что искажения трансформаторных импульсов определяются именно этими параметрами трансформаторной цепи, все они характеризуются как паразитные. Соотношение между паразитными параметрами собственно генератора и ИТ может быть различны. В отдельных случаях паразитные параметры генератора и нагрузки оказывают доминирующее влияние на искажение; тогда применение ИТ существенно затрудняется или становится вообще невозможным.

Для уменьшения искажения формы трансформируемых импульсов напряжения необходимо при проектировании импульсных трансформаторов стремиться к возможно большему уменьшению указанных параметров их обмоток путем применения сердечников и специальных магнитных сплавов, а также обмоток надлежащей конструкции. При этом большое значение имеет уменьшение размеров сердечника и числа витков обмоток.

Для анализа переходных процессов в импульсных трансформаторах обычно применяют схему замещения трансформатора (рис. 1.1), учитывающую как паразитные индуктивности, так и емкости обмоток.

Рисунок 1.1– Схема замещения трансформаторной цепи

1.2 Общие конструктивные схемы и классификация импульсных трансформаторов

Импульсные трансформаторы отличаются многообразием конструктивного исполнения. Это обусловлено их применением в широком диапазоне энергий, мощностей, напряжений, длительностей импульсов, различиями в назначении и условиях эксплуатации. Тем не менее, несмотря на это многообразие, все конструктивные схемы ИТ можно свести к четырем основным: стержневой, броневой, бронестержневой и тороидальный. Таким образом, по конструктивным признакам ИТ можно классифицировать как стержневые, броневые, бронестержневые и тороидальные. Форма поперечного сечения МС у них может быть прямоугольной или круговой.

Характерная конструктивная особенность ИТ – относительно малое число витков в его обмотках. По этой причине объем проводниковых материалов обмоток ИТ намного меньше объема МС и в качестве обобщающего технико-экономического показателя конструкции ИТ естественно принимать объем его МС. Если принять такой показатель качества, то так как не все конструкции в этом отношении равноценны, ведь в каждой из них эффективно используется только та часть объема МС, которая заключена внутри обмоток, внешние части МС, т.е. ярма, служат только для проведения рабочего магнитного потока ИТ, а поперечное сечение постоянно по длине, то эффективность использования МС можно охарактеризовать коэффициентом использования длины λ = h/l, где под высотой обмотки h понимается суммарная высота катушек. Максимальные значения этого коэффициента составляют: для тороидальной МС – 0.95; для стержневой – 0.6; для броневой и бронестержневой – 0.3. Таким образом, наиболее экономичны ИТ тороидального типа, относительно экономичны – стержневого и менее всего экономичны – броневого и бронестержневого. Если учесть, что конструктивно и технологически стержневые, броневые и бронестержневые ИТ примерно равноценны, то следует вывод о целесообразности применения тороидальных и стержневых МС в ИТ, особенно мощных, отличающихся большим объемом МС.

Коэффициент использования длины МС можно повысить, увеличив высоту стержня или диаметр МС. Однако такие вытянутые в высоту или увеличенного диаметра конструкции имеют большие габариты, менее прочны, нетехнологичны, для них характерен повышенный расход проводниковых материалов, потери мощности в обмотках, искажения трансформированных импульсов и другие недостатки. Однако наиболее важно то, что высшие функциональные показатели достигаются в конструкциях ИТ с максимальной большой площадью сечения и минимальной длиной МС. В связи с этим коэффициент использования длины МС является показателем относительным и характеризует только степень конструктивного совершенства ИТ.