Смекни!
smekni.com

Аналіз стійкості процесів в нелінійній схемі (стр. 2 из 5)

Всі етапи, до отримання еквівалентної схеми, можна зробити за допомогою ЕОМ. Доцільно покласти на машину і складання характеристичного полінома, тому, що при високому порядку схеми трудомісткість ручної роботи велика та зростає вірогідність помилок. Для розрахунка коефіцієнтів характеристичного полінома потрібна програма, яка дозволяє скласти функції кола в символьному та чисельно-символьному вигляді.

Довільна функція кола

уявляє собою відношення поліномів від

.

Коефіцієнти поліномів залежать від параметрів елементів схеми.

Будемо казати, що функція кола записана в чисельно-символьному вигляді, якщо коефіцієнти її поліномів – числа. Очевидно, що при цьому всі параметри елементів схеми задані чисельними значеннями. Якщо всі або частина параметрів можуть приймати різні значення з деякого чисельного інтервалу, то такі елементи позначають символами (наприклад,

,
,
і т.д.). Тоді коефіцієнти поліномів будуть функціями символів. Тепер будемо вважати, що функція кола подана в символьному вигляді.

Покажемо, як по функції кола визначити характеристичний поліном. Нехай відносно довільних двох точок еквівалентної схеми для малих збурень знайдено вхідний опір

,

де

- джерело струма, ввімкнене на виділених затискачів схеми;

- напруга, викликана цим джерелом.

Представимо зв’язок між струмом і напругою в вигляді

.

Оскільки

- оператор диференціювання, то цей вираз – диференційне рівняння, в якому
- реакція схеми на зовнішній вплив
. При
рівняння описує приватні коливання напруги в схемі, тому
- характеристичний поліном. Аналогічно виділяють характеристичні поліноми і при інших функціях кола.

Ми не будемо конкретизувати алгоритм аналізу локальної стійкості положення рівноваги нелінійної схеми, так як він залежить від програм, якими володіє розробник.

Накінець, розглянемо причини, які можуть порушити стійкість положення рівноваги в схемі. Частіш усього, таких причин дві – зворотній зв’язок та елементи, в характеристиці яких є спадаюча ділянка.

Зворотній зв’язок в окремих схемах створюється штучно, наприклад в автогенераторі. В підсилювачі потужності на біполярному транзисторі він може викликатися індуктивностями виводів та міжелектродними ємностями, а також ємністю одного із переходів.

Спадаюча ділянка в вольт-амперній характеристиці діода може створюватися спеціально (тунельний діод), але бувають випадки, коли вона виникає поза нашого бажання, наприклад, при напругах переважаючих гранично допустимі значення.

Уявлення про причини нестійкості допомагає цілеспрямовано впливати на їх. Крім того, наявна відсутність перелічених факторів може бути основою для відмови від аналізу стійкості.

3. Елементи теорії лінійних диференційних рівнянь із періодичними коефіцієнтами

Вище було показано, що поведінка малих відхилень від періодичного режиму визначається диференційними рівняннями з періодичними коефіцієнтами, які називаються рівняннями першого приближення. Стосовно до періодичного режиму за допомогою (4) отримаємо

. (6)

Тут, на відміну від рівняння (5),

і
- періодично змінювані провідність і ємність. Період зміни цих елементів співпадає з періодом усталеного режиму в шуканій нелінійній схемі, позначимо його
- період модуляції параметрів.

Рівнянню (6) відповідає еквівалентна схема для малих збурень (лініаризована схема). Вона виходить з шуканої усуванням зовнішнього джерела струму та заміною нелінійних елементів на елементи з періодично змінюваними параметрами.

Періодичний закон, за яким модулюються параметри, описується або функцією часу, або спектральними методами рядів Фур’є. Обидві форми визначаються періодичним режимом. Якщо який-небудь параметр нелінійної схеми, або зовнішнього впливу змінюється, то характеристики періодичного режиму теж змінюються, а це робить в (6) зміну функцій, модулюючих параметри.

Аналіз локальної стійкості періодичного режиму проводиться на основі двох теорем. Перша доведена А.М. Ляпуновим і відноситься до неавтономної схеми. Ствердження другої, доведено А.А. Андроновим і А.А. Виттом. Вона визначає стійкість автоколивань.

Теорема Ляпунова. Якщо всі характеристичні корені рівняння першого зближення за модулем менше одиниці, то періодичний режим в нелінійній неавтономній схемі асимптотично стійкий; якщо є хоч один характеристичний корінь, за модулем більший одиниці, то періодичний режим нестійкий.

Теорема Андронова-Витта. Якщо серед характеристичних коренів рівняння першого зближення автономної схеми є хоч один звичайний, за модулем рівним одиниці, то періодичний процес стійкий за Ляпуновим (асимптотичний орбітально стійкий); якщо хоч один характеристичний корінь, за модулем більший одиниці, то періодичний процес нестійкий.

Роз’яснимо асимптотичну орбітальну стійкість періодичного режиму. Будемо уявляти періодичний режим в нелінійний схемі рухом зображуючої точки по замкнутій кривій. Під дією флуктуацій виникає збурений рух, який визначається переміщенням другої зображаючої точки. Очевидно, що після дії флуктуацій обидві зображені точки будуть знаходитись неподалік одна від одної. Припустимо, періодичний процес стійкий та траєкторії збуреного та незбуреного руху протягом певного часу з’єднуються. В цьому випадку для зображаючих точок можливі два варіанти: обидві точки при з’єднанні траєкторій зливаються або з’єднання траєкторій не супроводжується збігом обох точок. Перша ситуація характеризує асимптотично стійкий періодичний процес, друга – асимптотичний орбітально стійкий (або стійкий за Ляпуновим).

Щоб зрозуміти, що таке характеристичні корені лінійних диференційних рівнянь із періодичними коефіцієнтами, розглянемо основні положення теорії таких рівнянь.

Для спрощення припустимо, що порядок рівняння (6) дорівнює трьом. Тоді його можна привести до виду

,

де точки означають диференціювання в часі, коефіцієнти

- періодичні функції з періодом
,
.

Усяке конкретне рішення записаного рівняння відповідає конкретним початковим умовам, які можна задати вектором

. Якщо взяти три лінійно незалежних початкових вектора, то вони визначають три лінійно незалежних рішення. Прийнявши останнє за стовпці, сформуємо фундаментальну матрицю рішень. За допомогою цієї матриці можна виразити усяке рішення (6), відповідаючє довільним початковим умовам.

Серед фундаментальних матриць відокремимо таку, котра в початковий момент часа виявляється одиничною. Іншими словами, розглянемо фундаментальну матрицю

, складену з рішень, для котрих початкові умови складають стовпці одиничної матриці. Якщо в цій фундаментальній матриці покласти
, то отримаємо характеристичну матрицю
. Її власні числа
і є характеристичні корені рівняння (6). Отже, характеристичний поліном при
можна записати у вигляді

,

де

- одинична матриця.

Кожному простому одиничному кореню

відповідає рішення
, маюче властивість