Смекни!
smekni.com

Компьютерная схемотехника (стр. 26 из 32)

Рисунок 10.20

В цифровых системах операции выборки и хранения периодически инициируются таймерами. На рисунке 10.21 показаны процессы, протекающие в УВХ при постоянной частоте управляющих импульсов. Время между командными сигналами называется периодом квантования Т.

Рисунок 10.21

10.2.3.3 Функциональные возможности и схема включения микросхемы УВХ К1100СК2 (КР1100СК2)

Микросхемы серии К1100 (КР1100) и К1100СК2 (КР1100СК2) представляют собой устройство выборки и хранения аналогового сигнала (УВХ). По команде, поступающей на управляющий вход, они с высокой точностью запоминают мгновенное значение входного сигнала и в течении определенного времени поддерживают равное ему напряжение на выходе. Схемы предназначены для применения в цифровых системах совместно с аналого-цифровыми преобразователями для расширения частотного диапазона обрабатываемых сигналов.

Изображение корпуса микросхемы КР1100СК2 на сборочных чертежах приведено в [6].

Структура ИМС КР1100СК2 (рисунок 10.22) включает: схему управления электронным ключом (СУЭК), два операционных усилителя (DA1, DA2) и несколько вспомогательных пассивных электронных компонентов (диоды VD1, VD2 и резисторы R1, R2).

Рисунок 10.22

Назначение выводов ИМС:

1 – питание (+Uпит);

2 – балансировка напряжения сдвига нуля;

3 – вход УВХ;

4 – питание (-Uпит);

5 – выход;

6 – подключение емкости хранения;

7 – 2-й вход СУЭК;

8 – 1-й вход СУЭК.


Основные электрические параметры:

1. Номинальное напряжение питания ±12 В
2. Ток потребления при Uпит=±12 В 4 мА.
3. Время выборки при Схр = 1000 пФ 5 мкс
4. Апертурная задержка при Схр = 1000 пФ, не более 250 нс
5. Коэффициент передачи при Uпит = ±12 В 1
6. Скорость изменения выходного напряжения в режимехранения при Схр = 1000 пФ и Uвх = 5 В ... 0,2 мВ \ мс. 0,2мВ\мс.
7. Время установления в режиме хранения 0,4 мкс.
8. Напряжение смещения нуля 5 мВ.
9. Входное напряжение ±5 В
10. Сопротивление нагрузки 10 кОм.
11. Управление микросхемой осуществляется от ТТЛ-логики:режиму выборки соответствует уровень 1 , режимухранения – уровень 0.
12. В качестве емкости хранения рекомендуется использоватьвысокостабильные конденсаторы: металлокерамические,стеклокерамические или фторопластовые.

Типовая схема включения микросхемы КР1100СК2 показана на рисунке 10.23. В этой схеме балансировка напряжения смещения нуля в режиме выборки осуществляется резистором R2.

Рисунок 10.23


На рисунке 10.24 показана функциональная схема подсистемы ввода аналоговых сигналов в цифровую информационную систему с использованием УВХ типа КР 1102СК2.

По сигналам управления, поступающим от однокристальной микро ЭВМ (ОМ ЭВМ), мультиплексор подключает выбранный аналоговый сигнал ко входу УВХ. Последнее запоминает мгновенное значение этого сигнала и хранит его в течение времени преобразования АЦП.

Рисунок 10.24

10.2.4 АЦП MAX154

На современном рынке микросхем представлен широкий спектр СБИС АЦП, среди которых распространенными являются микросхемы фирмы «MAXIM».

Ниже рассмотрена одна из таких современных СБИС АЦП – MAX154, выполненная по КМОП технологии. Она представляет собой высокоскоростной четырехканальный АЦП, а также выполняет функции мультиплексора и УВХ.

10.2.4.1Описание микросхемы MAX154. Временные диаграммы и режимы работы

Преобразователь имеет встроенное устройство выборки-хранения, мультиплексор, внутренний формирователь опорного напряжения: 2.5В.


Рисунок 10.25

Диапазон аналогового входа: от 0В до 5В.

Питающее напряжение: +5В.

Время преобразования на каждый канал: 2.5 мкс.

Погрешность: 1/2 МЗР

Потребляемый входной ток: 15мA

Допустимый диапазон рабочих температур: от –40°С до +85°С.

Интерфейс с микропроцессором упрощен возможностью адресации микросхемы как области памяти или порта ввода/вывода без использования внешней логики. В качестве выхода используется регистр-защелка с третьим состоянием, что позволяет напрямую подключить микросхему к шине данных или портам ввода.

Внешний вид микросхемы приведен на рисунке 10.25, а описание выводов – в таблице 10.1.

Таблица 10.1 – Описание выводов микросхемы МАХ154

Номер вывода Наименование Назначение
1 AIN4 Аналоговый вход 4
2 AIN3 Аналоговый вход 3
3 AIN2 Аналоговый вход 2
4 AIN1 Аналоговый вход 1
5 REF OUT Выход внутреннего опорного напряжения: +2.5В
6 DBO Бит 0 выхода
7 DB1 Бит 1 выхода
8 DB2 Бит 2 выхода
9 DB3 Бит 3 выхода
10 RD Управляющий бит доступа к данным и начала преобразования
11 INT Сигнал индикации завершения преобразования
12 GND Земля
13 Vref- Нижняя граница входного сигнала
14 Vref+ Верхняя граница входного сигнала
15 RDY Выходной сигнал готовности для микро- процессора. Принимает значение логического нуля, когда CS активен, и переходит в третье состояние по окончанию преобразования.
16 CS Выбор микросхемы (кристалла)
17 DB4 Бит 4 выхода
18 DB5 Бит 5 выхода
19 DB6 Бит 6 выхода
20 DB7 Бит 7 выхода
21 A1 Бит 1 номера входного канала
22 A0 Бит 0 номера входного канала
23 NC Не подключен
24 Vdd Питание +5В

Таблица 10.2 отражает выбор входного канала адресными сигналами А1 и А0.

Таблица 10.2

А1 А0 Входной канал
0 0 AIN1
0 1 AIN2
1 0 AIN3
1 1 AIN4

Микросхема МАХ154 использует только два управляющих вывода: чтение - RD и выбор кристалла – CS. Операции чтения и преобразования инициируются низкими уровнями CS и RD, защелкивая адресные входы мультиплексора.

Функциональная схема MAX154 приведена на рисунке 10.26.

Рисунок 10.26

На входе схемы стоит четырехканальный аналоговый мультиплексор, который в зависимости от комбинации сигналов на адресных входах А0, А1 соединяет (коммутирует) один из аналоговых входов с устройством выборки-хранения, запоминающим входной сигнал и поддерживающим его практически неизменным в течении времени преобразования АЦП.

В АЦП использован «параллельно-последовательный» принцип преобразования. Два четырехразрядных параллельных АЦП служат для получения выходного 8-битного результата. Каждый из четырехразрядных АЦП содержит по пятнадцать компараторов, осуществляющих сравнение текущего значения входного сигнала с нормированными постоянными эталонными напряжениями. Величины этих напряжений зависят от значений опорных напряжений: VREF+ и VREF–, и отличаются друг от друга на величину Du, которая соответствует изменению выходного 4-разрядного ДК каждого АЦП на ±1мзр.

Вначале преобразования, используя 15 компараторов, верхний 4-битный АЦП старших 4-х разрядов сравнивает неизвестное входное напряжение с эталонными напряжениями и подает на выход 4-ре старших бита. Одновременно эти значения старших бит поступают на вход ЦАП, который формирует аналоговое напряжение, пропорциональное этому коду. Это напряжение вычитается из входного аналогового сигнала и полученная разность Du поступает на вход нижнего 4-битного АЦП, где сравнивается с эталонными напряжениями 15 компараторов для получения значений 4-х младших разрядов выходного ДК. На выходе MAX154 находится регистр-защелка с третьим состоянием, что позволяет напрямую подключать микросхему к шине данных или портам ввода.

Описание работы параллельного 4-х разрядного АЦП

Простейшая схема четырехразрядного АЦП дана на рисунке 10.26.1.


Рисунок 10.26.1

Преобразователи этого типа осуществляют одновременное квантование сигнала с помощью набора компараторов, включенных параллельно источнику входного сигнала. Пороговые уровни компараторов устанавливаются с помощью резистивного делителя, подключенного к источнику опорного напряжения UОП в соответствии с используемой шкалой квантования. Число уровней квантования, а соответственно и число компараторов для n-разрядного АЦП равно 2n-1.

При подаче на такой набор компараторов сигнала UВХ на их выходах имеет место дискретный сигнал, отображающий срабатывание отдельных компараторов. Так, например (см. рисунок 10.26.1) если входное напряжение не выходит за пределы диапазона от 2,5Du до 3,5Du (Du– шаг квантования), то компараторы с первого по третий устанавливаются в состояние 1, а компараторы с четвертого по пятнадцатый – в состояние 0. Для преобразования числа сработавших компараторов в двоичный код используется соответствующее кодирующее устройство. Состояния данного кодирующего устройства для четырехразрядного АЦП показаны в таблице 10.2.1