Смекни!
smekni.com

Оптимизация антенн с использованием гибрида генетического алгоритма (стр. 2 из 3)

Таким образом, детерминированные фрактальные, полифрактальные и фрактально-произвольные решетки соотносятся друг с другом во многом так, как квадрат с прямоугольником, а прямоугольник с параллелограммом. Фрактально-произвольные решетки обладают наиболее общей геометрией, чем прочие, что в наибольшей степени затрудняет работу с ними. Поскольку в ПФР применяются показатели связи для определения того, как и когда применяется любой из множества генераторов, они являются подклассом фрактально-произвольных решеток. В свою очередь, детерминистские фрактальные решетки по сути являются полифрактальными или фрактально-произвольными решетками, в которых для выбора имеется лишь один генератор. Примеры всех трех типов решеток показаны на Рис. 1. Чтобы вам было легче представить конфигурацию решеток, мы используем характерную геометрию фрактального дерева. Кроме того, на Рис. 2 для представления отношений, связывающих три типа антенных решеток в плане их конфигурации, использована диаграмма Венна. Параметр Sc представляет поле решения и содержит набор всех возможных методов, используемых для построения антенных решеток.

Концепции детерминистских фрактальных и полифрактальных решеток можно использовать не только ради их связи друг с другом, но и для описания конфигураций периодических и произвольных решеток. Поскольку ПФР являются подклассом фрактально-произвольных решеток, положения, связанные с ПФР, в равной степени применимы к фрактально-произвольным. Понятия, касающиеся ПФР, можно использовать в описаниях всего ряда периодических антенных решеток, если тщательно подбирать параметры генератора так, чтобы антенные элементы были на равном расстоянии друг от друга. Для решения этой задачи есть несколько способов: возможно, простейшим для понимания является разложенное (факторированное) полифрактальное представление. Возьмем, к примеру, периодическую решетку, полное количество элементов PT которой можно представить составным числом простых множителей М, так что PT = р1 р2... рМ. ПФР уровня М можно построить из М генераторов, по одному на каждый из простых множителей. Любой оператор Хатчинсона Wm имеет рm аффинных линейных преобразований (т.е. Nm = pm), когда преобразования выбираются таким образом, чтобы каждая из преобразованных (перенесенных) подгрупп имела периодический интервал. Показатель связи для каждого из этих преобразований равен уровню ℓ фрактально-произвольной решетки, так что каждый из генераторов полностью применяется только к одному-единственному уровню ПФР. Поэтому очевидно, что любая конфигурация периодической решетки должна иметь, по крайней мере, одно соответствие среди ПФР.

Хотя для описания любой периодической решетки можно использовать разложенное полифрактальное представление, могут существовать также и более простые схемы полифрактальных периодических решеток. Разложенное полифрактальное представление можно упростить путем объединения нескольких простых множителей в небольшие составные числа, сокращая тем самым общее количество уровней, необходимых для получения антенной структуры. Более того, хотя и не столь очевидным образом, периодические решетки можно также строить из ПФР более общего характера. Далее, некоторые периодические решетки можно также описывать через детерминистские фрактальные решетки. Помимо тривиального случая одноступенчатой решетки, периодическую решетку можно построить в том случае, когда есть возможность разложить число элементов в структуру NL, где N представляет число трансформов в операторе Хатчинсона, а L представляет количество ступеней во фрактальной решетке. Параметры определяют так, чтобы интервалы между любыми аффинными линейными преобразованиями оператора Хатчинсона были равны.

Если набор применяемых генераторов столь велик, что ни один из них не может быть выбран более одного раза, методологией ПФР можно пользоваться для описания полностью произвольных решеток. Полифрактальная модель, хотя и является для чисто произвольных решеток громоздкой и неэффективной, с теоретической точки зрения все же вполне здесь применима. Таким образом, можно сделать вывод, что с помощью ПФР можно описать любой класс антенных решеток. Кроме того, в большинстве случаев оказывается, что для решеток, построенных из множества генераторов, разупорядоченность (произвольность) ПФР является большей. Показанная диаграмма Венна представляет классификацию периодических, произвольных, фрактальных и полифрактальных решеток относительно конечной конфигурации решетки. В поле решения Sa показан ряд всех возможных конфигураций решеток; это поле отличается от поля решения Sс, представленного выше. Также очевидно, что любую решетку можно представить в виде ПФР. Однако пунктиром обозначена граница, за пределами которой полифрактальную модель больше невозможно использовать для описания геометрии антенной решетки. В данном реферате мы предъявляем оптимизационную процедуру, с помощью которой можно, используя понятия, характерные для ПФР, последовательно преобразовывать решетки, имеющие периодическую конфигурацию, основанную на фракталах, в более произвольные решетки. В следующих разделах подробно обсуждаются процессы, используемые для того, чтобы оптимизация могла следовать в этом русле.

антенна оптимизационный гибридный алгоритм

2. Гибридный оптимизационный алгоритм

Блок-схема алгоритма, представленная на Рисунке 1, в целом состоит из двух разных процедур, выполняемых последовательно. Вначале оптимизатор ГА обеспечивает - посредством периодически повторяющегося, быстрого машинного моделирования возможных решений - оптимальное решение задачи с низкой точностью. Такой промежуточный результат называют грубым оптимальным решением. Далее в целях проверки того, насколько такое решение приемлемо для получения конечного решения задачи, выполняется точное моделирование грубого решения. Если при этом выявляются неудовлетворительные характеристики, т.е. смещение резонансных частот или повышенный уровень входных коэффициентов отражения, то запускается следующая процедура, основанная на АКП. На этом этапе для получения точного решения задачи, называемого точным оптимальным решением, используют локальный оптимизатор, задействующий как грубую, так и точную модель. Такое решение схоже с грубым решением, выданным ГА, в плане соответствия тех параметров, которые избраны в качестве целей оптимизации. Следовательно, разработчику нужно определить параметры, которые изменяются в процессе оптимизации - они имеют обозначения хс и хf(здесь и далее см. обозначения в тексте), а также характеристики (базисные функции, погрешность интегралов и т.п.) как грубых, так и точных моделей. Этот этап критичен, т.к. правильность выбора определяет конечный успех оптимизации. Грубая модель должна быть как можно более быстрой, но такой, чтобы ее выход Rcс) сохранял определенное сходство с выходом Rff) от точной модели. Иначе не будет работать этап АКП. После того, как выбор сделан, оптимизатор ГА, применяя генетические операторы только к грубым моделям, находит оптимальное грубое решение, обозначаемое х*с. Если оказалось, что отклонение выхода, полученного при точном моделировании Rf(х*с) оптимального грубого решения, является более высоким, чем это приемлемо, то АКП ищет соответствие Р между точной и грубой моделями хс = Р(хf) так, чтобы Rff) ≈ Rcс). Для определения Р выполняют итеративную локальную оптимизацию. Ключевыми этапами АКП являются фаза извлечения параметров, когда утверждается грубая модель, лучше всего подходящая для определенной точной модели; уровень обновления соответствия (картирования), когда с помощью уравнения Бройдена (Бандлер и др. 1995) изменяется оценка Р; и уровень инвертирования соответствия, когда определяется точная модель для следующей итерации. Если грубая и точная модели выбраны так, как следует, такая итеративная процедура выдает точное оптимальное решение х*f, при котром выходы Rff) и Rcс) являются схожими вплоть до заранее установленного уровня точности. Подробнее об АКП можно прочитать в (Бандлер и др. 2004).

3. Пример оптимизации

Для проверки адекватности метода в качестве примера оптимизации предлагается определение необходимых длин и точек возбуждения для антенной решетки, состоящей из 3 х 3 излучателей (типа заплат), размещенной на конечном квадратном (заземленном?) экране и работающей на частоте 4,5 ГГц. При симметричности задачи, представленной на Рисунке 2(а), имеем всего 12 оптимизационных параметров, связанных как с длиной (L1..., L6), так и с расстоянием точек возбуждения от центра излучателя (d1,... d6). Постоянными величинами в данном примере являются ширина излучателя (W = 3 см), длина стороны экрана (Lg = 12 см) и расстояние между антеннами и землей (h = 0,15 см). Используемой подложкой является воздух.

Для решения этой задачи с помощью глобального оптимизатора необходим надежный код, который моделировал бы произвольно созданные конструкции. Все результаты, представленные в работе, получены из решения интегрального уравнения электрического поля со смешанным потенциалом, содержащего высоко-порядковые базисные функции Лежандра, с помощью метода моментов (Йоргенсен и др. 2004). При заданном специфическом наборе длин и точек возбуждения, описанном выше, для точного решения задачи требуется 6000 базисных функций и, если использовать 2,2 ГГц-ый процессор AMDOpteron, необходимо время анализа, равное 4 мин. на одну частоту. Поскольку для выполнения оптимизационного процесса в пространство поиска входит 1012 возможных решений, алгоритм µГА получает результаты оптимизации спустя примерно 3000 эмуляций. При отсутствии параллелизма обработки общее время оптимизации для такой простой задачи могло бы быть около девяти дней. Применение грубой модели элементов, дающее сокращение как числа базисных функций, так и точности интегралов, что было описано в предыдущем разделе, помогает получить результат быстрее, правда ценою смещения эмулированной характеристики по частотному спектру примерно на 100 МГц.