регистрация /  вход

Прецизионные резисторы (стр. 1 из 3)

Резистори належать до найбільш поширених компонентів радіоелектронної апаратури. На них припадає від 20 до 45%, тобто майже до половини загальної кількості усіх компонентів електричних кіл. Вони заслужили це завдяки їх фізичній властивості - опору.

Прецизійними є резистори підвищеної точності ±(0,05 ч 5)% і стабільності (ТксЌ10-4 1/ос), номінальні опори яких складають від 1 Ом до 1 МОм, гранична робоча напруга - не більше сотень вольт, діапазон номінальних потужностей розсіювання - від 0,05 до 2 Вт, частотний діапазон - до одиниць мегагерц, а зміна опору до кінця терміну служби - декілька відсотків. Більше 40% відмови РЕА відбувається унаслідок відмови резисторів, тому актуальною залишається тема використання високоточних і надійних прецизійних резисторів. Не дивлячись на високу вартість і технологічну складність виготовлення, вони незамінні в багатьох точних пристроях, але про використання прецизійних резисторів йтиметься далі.

Прецизійні резистори можуть бути дротяними і недротяними (товстоплівкові, тонкоплівкові і композиційні). У обох випадках для забезпечення їх високої точності виконують технологічну підгонку під заданий допуск номінального опору. У першому випадку змінюють число витків при намотуванні, а в другому - юстують струмопровідний елемент, наприклад, додатково нарізуючи витки на каркасі. Щоб забезпечити високу стабільність прецизійних резисторів, використовують різні методи. У недротяних резисторах зменшують перегрів струмопровідного шару, збільшуючи поверхню тепловіддачі, резистори піддають тривалому електротермотренуванню.

Очевидно що ці заходи не є найбільш раціональними, тому в даний час використовується лише обмежена кількість недротяних прецизійних резисторів: з раніше випущених типів - УЛІ (вуглецеві лаковані для вимірювальної техніки) і БЛП (боровуглецеві лаковані прецизійні) і які випускаються в даний час С2-13, С2-14.

Як прецизійні резистори найчастіше використовують дротяні. Їх виготовляють з дроту, що має позитивний малий температурний коефіцієнт питомого опору, вони не змінюють своїх властивостей в процесі старіння і є стійкими до дії навколишнього середовища.

Основними недоліками дротяних резисторів є досить висока вартість, великі габарити і часто обмежений частотний діапазон. Проте розвиток мікрометалургії (отримання мікродроту в скляній ізоляції) дозволив виготовляти дротяні резистори, розміри яких подібні до розмірів прецизійних недротяних резисторів і навіть менше. В результаті ухвалення ряду конструктивних заходів(зустрічне намотування, намотування подвійним дротом, застосування металевих каркасів) паразитна індуктивність і ємність дротяних резисторів можуть бути зведені до необхідного мінімуму, а тим самим може бути забезпечена робота цих резисторів в мегагерцевому діапазоні. Дротяні прецизійні резистори є дуже точними і стабільними (0.05%, <10ppm/°c). Вони використовуються тільки в дуже критичних схемах, таких як схеми підстроювання і прецизійних аттенюатори. Типові номінали - від 0.1 Ом до 1.2 МОм.

Металоплівкові резистори зазвичай вибирають для прецизійних схем, де потрібна висока точність, низький температурний коефіцієнт, і низький шум. Такі резистори зазвичай складаються з ніхрому, оксиду олова або нітриду танталу і випускаються в герметичних або, опресованих фенольних корпусах. Типове їх використання в мостових схемах, RC- генераторах і активних фільтрах. Початкова точність варіюється від 0.1 до 1%, температурний коефіцієнт від 10 до 100 ppm/°c. Стандартні номінали від 10 Ом до 301 КОм з кроком 2% (для допусків 0.5% і 1%). Металоплівкові маркіруються послідовністю з чотирьох цифр (три перших - число, четверта - кількість нулів. Приклад "4991" - 4990ом, "49R9" - 49.9 Ом).

У резисторі С5 встановлюються в мікроелектронній апаратурі на друкованих платах і підкладках гібридних ІС. Резистори С5-5 звичайного і тропічного виконання виконують намотуванням з кроком манганієвого дроту на керамічний каркас, який ущільнюють кремнійорганічною гумою, фторопластовою стрічкою і захищають металевим кожухом, а з торців - керамічними шайбами. Діаметр цих резисторів від 6,15 до 11,2 мм, а довжина від 20 до 52 мм.

Резистори С5-15 прямокутної форми, виконані з мікродроту в скляній ізоляції, мають найменші розміри (4 х 3, 6 х 2,5 мм), масу, номінальну потужність, вібронайміцніші і встановлюються на підкладках гібридних ІС. Резистори С5-22, призначені для роботи в умовах високого вакууму, мають широкий діапазон номінальних опорів і розміри 8 х 8 х 3,6 мм. Резистори С5-25в діаметром від 7 до 11 мм і завдовжки від 17 до 22,5 мм на відміну від резисторів С5-5 не мають металевого корпусу і захищені від дії зовнішнього середовища лише кампаундом. Тому верхня межа їх робочої температури менша.

Резистори С5-41 (високочастотні - до 1МГц) прямокутної форми (27 х 10 х 3,5 мм) використовуються тільки для друкованого монтажу. Резистори С5-53 і С5-54, що використовуються на частотах до 1кГц, мають діаметр від 9 до 19 мм і довжину від 20 до 56 мм.

Вуглецеві прецизійні резистори - це тонкошарові резистори, резистивний елемент якого являє собою плівку піролітичного вуглецю на керамічній підставці, отриману розкладанням вуглеводнів у вакуумі або в середовищі інертного газу при високій температурі. В даний час вуглецеві резистори є одним з найбільш поширених типів постійних резисторів. Вони широко застосовуються в електронній апаратурі завдяки високій стабільності параметрів, стійкості до імпульсних перевантажень, низькому рівню шумів, невеликому температурному коефіцієнту опору, малій залежності опору від напруги і частоти та щодо низької собівартості.

Вказані особливості вуглецевих резисторів обумовлені властивостями піролітичного вуглецю - його термостійкістю, хімічною стійкістю, порівняно великим питомим опором, можливістю отримання провідних шарів з різним опором і низьким ТКР, причому за значенням ТКР піролітічного вуглецю може бути значно понижений при введені в нього певного відсоткового змісту бору, що і використовується у виробництві вуглецевих прецизійних резисторів.

Дуже тонкі шари піролітичного вуглецю, що використовуються для отримання високоомних резисторів, мають порівняно малу стабільність параметрів, тому граничні значення опорів вуглецевих прецизійних резисторів складають 104-105 Ом.

Піролітичний вуглець отримують шляхом термічного розкладання пари вуглеводнів без доступу повітря.

Найбільш поширені способи виготовлення композиційних резисторів засновані на змішуванні провідного компонента, наприклад графіту або сажі з органічними чи неорганічними сполуками, що їх пов’язують приклад фенольними або ефірними смолами (епоксидною, гліфтальовою, кремнійорганічною), наповнювачів пластифікатором і затверджувачем. Такі системи називаються гетерогенними.

Сучасна технологія виробництва складних гетерогенних систем дозволяє отримати резистори з широким діапазоном значень опорів від десятків ом до декількох мегаом.

Завдяки використанню композицій отримують резистивні елементи будь-якої форми - у вигляді масивного тіла або плівки, нанесеної на ізоляційну підставку. Композиційні високоомні резистори з великою площею поперечного перерізу резистивного елемента надійно працюють в різних режимах і умовах експлуатації. Технологія виготовлення композиційних резисторів не вимагає складного устаткування і дорогих матеріалів. Змінюючи склад композицій і умови їх обробки, можна варіювати опір і значення ТКС резистивного елемента.

Невисока вартість композиційних резисторів, простота технологічних процесів виробництва сприяли їх широкому застосуванню. Композиційні матеріали успішно використовуються для створення постійних прецизійних резисторів і потенціометрів.

Як провідні компоненти в композиціях використовуються в більшості випадків порошкоподібні провідники - сажа і графіт.

Сажа - продукт неповного згорання або термічного розкладу вуглецевих речовин. Сировиною для отримання сажі слугують газоподібні, рідкі і тверді вуглеводні (природні гази, антрацен, нафталін і т. п.). Загальною технологічною операцією у виробництві сажі з різних початкових матеріалів є спалювання сировини за допомогою пальників або форсунок в печах при обмеженому доступі повітря або його термічне розкладання за відсутності повітряного середовища.

Як провідний компонент в композиціях також широко використовується графіт - алотропна форма вуглецю. До складу графіту входять зазвичай механічні домішки різних мінеральних речовин, а також летючі (С02 , СН) та ін. У технології виробництва композицій застосовуються різні види колоїдного графіту, який є продуктом термохімічної переробки натурального графіту.

Параметри прецизійних резисторів, виготовлених за технологією BULKMETALFOIL, найбільш близькі до параметрів "ідеального резистора". Услід за науковим відкриттям доктора ф. Зандмана в 1962г. відбулось створення і промислове впровадження технології званої BULKMETALFOIL(BMF).Сьогодні ця технологія дозволяє створювати резистори найвищої точності, стабільності і надійності, максимально наближені до "ідеального опору". Запатентований метод з'єднання металевої фольги і керамічної підкладки дозволяє отримувати резистор з параметрами, недоступними для інших резисторів, - дротяних, товсто- і тонкоплівкових. Технологія BMF має три ключові відмінності. Перше - висока температурна стабільність і стабільність під навантаженням. Друге - висока точність отримуваного опору. І, нарешті, третє - висока надійність. В порівнянні з резисторами BMF, тонкоплівковим резисторам властивий ряд недоліків. Наприклад, при механічній або температурній деформації частинки, що формують плівку, розширюються. В процесі охолоджування вони не повертаються до початкового положення. Таким чином, кожна температурна дія або цикл деформації викликають зміну величини опору.Завдяки можливостям технології BMFможна досягти високих параметрів резисторів: температурного коефіцієнта опору(ТКR), коефіцієнта потужності опору, точність виготовлення номінального опору і його стабільності в часі під навантаженням, високої швидкодії, низького рівня шумів, ТЕРМО-ЕДС, малій залежності опору від напруги.З складного комплексу зовнішніх діючих чинників найбільший вплив на резистори створюють кліматичні і механічні навантаження. До них належать температура і вологість навколишнього середовища, атмосферний тиск, домішки в навколишньому середовищі, біологічні чинники, вібрація, удари, прискорення, що постійно діє, акустичні шуми. Окрім цього, при певних умовах можуть позначатися радіаційні дії (потік нейтронів, гамма-промені, сонячна радіація і т. п.) і чинники космічного простору. Температура і вологість навколишнього середовища є найважливішими чинниками, що впливають на надійність, строк дії і збереженість резисторів.Тривала дія підвищеної температури викликає старіння провідникових, контактних і ізоляційних матеріалів, внаслідок чого параметри резисторів зазнають необоротних змін. Добре ілюструє залежність потужності електричного навантаження від температури навколишнього середовища графік приведений нижче.

Узнать стоимость написания работы
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!