Смекни!
smekni.com

Розробка термореле (стр. 1 из 4)

РЕФЕРАТ

Пояснювальна записка містить: 32 сторінки тексту, 9 рисунків, 1 таблиця, 2 схеми, список використаних джерел з 6 найменувань.

Мета проекту –спроектувати функціональну електричну схему і програму ПЗП мікропроцесорного пристрою для вимірювання температури, який виробляє управляючий сигнал, по перевищенню заданої користувачем температури. Температура вимірюється за допомогою термодатчика з лінійною характеристикою з точністю до градуса і відображається на динамічному індикаторі.

У даній роботі була розроблена програма на базі мікроконтролера і8051 для вимірювання температури за допомогою датчика DS18B20. Вимірювання температури проводяться безперервно.

ДАТЧИК ТЕМПЕРАТУРИ, МІКРОКОНТРОЛЕР, РК-ДИСПЛЕЙ, ЦИФРОВИЙ ТЕРМОМЕТР


ЗМІСТ

Реферат

Вступ

1 Аналіз технічного завдання

1.1 Розробка структурної схеми пристрою

1.2 Обґрунтування вибору комплектуючих

2 Розробка апаратної частини

2.1 Опис електричних параметрів та схем підключення основних мікросхем

3 Розробка програмного забезпечення

3.1 Блок-схема алгоритму програми

3.2 Лістинг програми

Висновки

Перелік посилань


ВСТУП

Термодатчики повсюдно використовуються в різних областях електроніки. Це термометри, пожежні датчики сигналізації, моніторинг температури електронної апаратури - підсилювачі, джерела живлення, різні перетворювачі, температурний захист електронних приладів, контроль технологічних процесів і так далі. Використовуються як аналогові, так і цифрові датчики. Перевага цифрових датчиків в тому, що виключається додаткова погрішність вимірювального каналу, тобто дані з датчика знімаються вже в "готовому" виді, можливість об'єднання декількох датчиків в мережу для багатозонного виміру, що спрощує комутацію. Використання як інтерфейс стандартної шини істотно спрощує стикування з іншою апаратурою.

Термодатчики є первинними перетворювачами і служать для виміру температури.

По методу виміру термодатчики діляться на два типи:

– термопари, дія яких заснована на вимірі термоелектрорушійної сили, термопарою (спаєм), що розвивається, з двох різнорідних провідників;

– термоопори, що використовують залежність електричного опору речовини від його температури.


1 АНАЛІЗ ТЕХНІЧНОГО ЗАВДАННЯ

1.1 Розробка структурної схеми пристрою

Центральною частиною приладу має бути однокристальний мікроконтролер, який управляє роботою усього пристрою, здійснює збір і обробку інформації, що поступає з датчиків вимірюваних величин, видає оброблену інформацію на індикацію. Для контролю часу в мікроконтролер вбудовані годинник реального часу.

У пристрої застосована динамічна індикація, яка являє собою індикаторну панель. Для вибору індикатора код, що відповідає його номеру надходить з мікроконтролера на аноди індикаторів одночасно з кодом цифри, що відображається на цьому індикаторі, який надходить з мікроконтролера. Мікроконтролер формує сигнал вибору індикатора (низький рівень - індикатор вибрано).

Блок вимірів складається зі схеми виміру – схеми виміру температури. Схема будується на відповідному датчику. Аналогові сигнали з блоку вимірів поступають для оцифрування на АЦП. З АЦП цифровий сигнал поступає на мікроконтролер для наступної обробки.

Кожен блок може бути замінений на іншій, функціонально-сумісний з ним. Природно, при цьому потрібне узгодження вхідних і вихідних параметрів блоків.

Схема електрична структурна зображена на рисунку 1.1.

Функціонування приладу повинне здійснюватися таким чином:

Блок живлення перетворить напругу мережі в необхідну для роботи приладу напругу.

Є датчик для виміру температури. Вихідні сигнали датчиків - аналогові. Для вирішення поставленого завдання необхідно оперувати цифровими даними. Тому в схему включаємо аналого-цифровий перетворювач. Для виміру вказаної в завданні фізичної величини існує достатній вибір датчиків різних фірм. Проте досить складно підібрати усі датчики так, щоб вони співпадали з вхідним діапазоном АЦП. Окрім цього деякі датчики вимагають наявності певних зовнішніх ланцюгів, наприклад, схеми збудження, калібрування і тому подібне. Тому неминуча поява додаткових елементів, схем і ланцюгів, які потрібні для коректної роботи усього пристрою.

Датчик температури не вимагає яких-небудь зовнішніх ланцюгів узгодження, оскільки добре узгоджується з АЦП, як по діапазону, так і по чутливості. Як датчик температури застосуємо датчик DS18B20 фірми DALLAS.

Мікроконтролер обробляє отриману інформацію і видає її на блок індикації.

Рисунок 1.1 − Структурна схема мікропроцесорного пристрою для вимірювання температури

1.2 Обґрунтування вибору комплектуючих

Поява на нашому ринку відносно дешевих цифрових датчиків температури і зовсім дешевих мікроконтролерів зробила можливим створення цифрового термометра, який не вимагає калібрування і має багато всяких можливостей. Серед цифрових датчиків температури найцікавішими є мікросхеми DS1820 і DS18В21 фірми DALLAS. Хороші вони тим, що використовують для обміну однопровідний інтерфейс (1 - WireTM) фірми DALLAS. Це означає що датчики можуть бути підключені до термометра усього за допомогою 3-х дротів (датчик DS1820 можна підключити навіть за допомогою двох дротів). Датчик DS1820 точніший (але дорожчий), має менший час перетворення. Зате DS1821 може бути запрограмований в режим термостата для повністю автономної роботи.

При розробці схеми велика увага приділялася простоті та мінімальній кількості деталей. Тому передбачено підключення лише одного датчика. Декілька датчиків підключити цілком можливо, але в цьому випадку потрібно буде встановити перемикач для вибору активного датчика вручну. Перемикач може комутувати виводи DQ датчиків (вивод 2 DS18B20).

Більш детально датчик DS18В20 розглянуто у розділі ІІ.

Схема мікропроцесорного пристрою для вимірювання температури будується на основі мікроконтролера і80С51.

Використання МК сімейства і8051 забезпечує збільшення об'єму пам'яті команд і пам'яті даних. Нові можливості введення-виводу і периферійних пристроїв розширюють діапазон застосування і знижують загальні витрати системи. Залежно від умов використання, швидкодія системи збільшується мінімум в два з половиною рази і максимум вдесятеро.

Сімейство і8051 включає п'ять модифікацій МК (що мають ідентичні основні характеристики 8051, 80С51, 8751, 8031, 80С31), основна відмінність між якими полягає в реалізації пам'яті програм і потужності споживання.

і8051 має у своєму складі такі апаратурні засоби:

- процесор, до складу якого входять 1-байтний АЛП і схеми апаратурної реалізації команд множення і ділення;

- стираючий ПЗП програм місткістю 4 Кбайта;

- ОЗУ даних місткістю 128 байт;

- два 16-бітові таймери/лічильники;

- програмовані схеми введення/висновку (32 лінії). Напрям обміну інформацією через порти - всі порти двунаправлені, причому є можливість в кожному порту частину розрядів використовувати для введення даних, а частину для виведення.

- блок дворівневого векторного переривання від п'яти джерел;

- асинхронний канал дуплексного послідовного введення/висновку інформації з швидкістю до 375 Кбіт/с;

- генератор;

- схему синхронізації і управління.

Мікроконтролер також має:

– 32 регістри загального призначення (РЗП);

– 128 визначуваних користувачем програмно-управляючих прапорів;

– набір регістрів спеціальних функцій.

– РОН і визначувані користувачем програмно-управляючі прапори, розташовані в адресному просторі внутрішнього ОЗУ даних.

Через обмежену кількість виводів корпусу мікросхеми мікроконтролера більшість виводів використовуються для виконання двох функцій - як лінії портів і для альтернативних функцій.

Система команд МК містить 111 базових команд з форматом 1, 2, або 3 байти. Всі команди виконуються за один або два машинні цикли (відповідно 1 або 2 мкс при тактовій частоті 12 Мгц), виключення – команди множення і ділення, які виконуються за чотири машинні цикли (4 мкс). МК сімейства і8051 використовують пряму, безпосередню, непряму і неявну, адресацію даних.

Як операнди команд МК сімейства і8051 можуть використовувати окремі біти, чотирьохбітові цифри, байти і двобайтові слова.

Набір команд сімейства і8051 має декілька особливостей, пов'язаних з типовими функціями виконуваними мікроконтролерами - управлінням, для якого типовою є операція з однорозрядними двійковими сигналами, велике число операцій введення/висновку і розгалужень програми.

Найбільш істотна особливість системи команд даних МК – це можливість адресації окремих біт в резидентній пам'яті даних. Крім того, як наголошувалося, деякі регістри блоку регістрів спеціальних функцій також допускають адресацію окремих біт.

Мікроконтролери сімейства 8051 є мікропроцесорними пристроями з архітектурою CISC зі стандартним набором команд, характерних для даної архітектури. Система команд 8051-сумісних пристроїв включає 111 основних команд розміром від одного до трьох байт, але більша частина цих команд – одно- або двобайтовими.

Систему команд сімейства і8051 можна підрозділити за функціональною ознакою на п'ять груп:

– пересилки даних;

– арифметичних операцій;

– логічних операцій;

– операцій над бітами;

– передачі управління.

Склад операндів включає в себе операнди чотирьох типів: біти, нібли (4 розряду), байти і 16-бітові слова. Час виконання команд становить 1, 2 або 4 машинних цикли. При тактовій частоті 12 МГц тривалість машинного циклу складає 1 мкс, при цьому 64 команди виконуються за 1 мкс, 45 команд - за 2 мкс і 2 команди (множення і ділення) - за 4 мкс.

Мікроконтролер має 128 програмно-керованих прапорів користувача. Є також можливість адресації окремих бітів блоку регістрів спеціальних функцій і портів. Для адресації бітів використовується пряма 8-бітна адреса. Непряма адресація бітів неможлива.