регистрация /  вход

Расчет лампы бегущей волны О-типа малой мощности (стр. 1 из 3)

Расчет лампы бегущей волны О-типа малой мощности


Содержание

Введение

1 Расчетная часть

1.1 Расчет геометрии замедляющей системы

1.2 Расчет дисперсионной характеристики и сопротивления

связи

1.3 Расчет геометрии рабочих параметров вывода и ввода энергии

1.4 Расчет величины индуктивности фокусирующего магнитного поля

Заключение

Список литературы

Приложение


Введение

Лампа бегущей волны - электровакуумный СВЧ прибор, работа которого основана на длительной бегущей электромагнитной волне и электронного потока, движущийся в одном направлении. ЛБВ предназначена для широкополосного усиления СВЧ колебаний в диапазоне частот от 300 МГц до 300 ГГц, а так же для преобразования умножения частот и других целей.

Основными частями лампы бегущей волны являются: электронная пушка для создания и формирования электронного потока; замедляющая система, снижающая скорость бегущей волны вдоль оси ЛБВ до скорости, близкой к скорости электронов, для синхронного движения волны с электронным потоком (обычно используется металлическая спираль, жестко закрепленная продольными диэлектрическими опорами и отличающаяся слабой зависимостью скорости бегущей вдоль неё волны от частоты, благодаря чему достигается эффективное взаимодействие волны с электронным потоком в широкой полосе частот); фокусирующая система (периодическая система постоянных магнитов, соленоид или др.) для удержания магнитным полем электронного потока в заданных границах поперечного сечения по всей его длине; коллектор для улавливания электронов; ввод и вывод энергии электромагнитных колебаний; поглотитель энергии колебаний СВЧ на небольшом участке замедляющей системы для устранения самовозбуждения ЛБВ из-за отражений волн от концов замедляющей системы. Усиление СВЧ колебаний в ЛБВ происходит следующим образом: ускоренные в электронной пушке электроны влетают в пространство взаимодействия замедляющей системы. В это же пространство через ввод энергии усиливаемые СВЧ колебания. При определенной конфигурации металлических элементов замедляющей системы электрическое поле волны в пространстве взаимодействия имеет составляющую, направленную вдоль оси прибора, с которой и происходит взаимодействия электронов. В замедляющей системе осуществляется синхронизм электронов и волн.

В результате взаимодействия с электрическим полем бегущей волны тормозятся или ускоряются в зависимости от фазы электрического поля, при этом происходит модуляция электронного потока по плотности: образование сгустков, сопровождающаяся возбуждением в замедляющей системе электромагнитного поля, тормозящего электроны в пучке. При торможении электроны отдают свою энергию, увеличиваю поля волны, то есть, усиливая входной сигнал.

В зависимости от длины волны к ЛБВ малой мощности обычно относятся ЛБВ с выходной мощностью до 1-10 Вт.


1. Расчетная часть

1.1 Расчет геометрии замедляющей системы

Выбираем условный угол пролета ξа

в заданных пределах 1,6
1,8
. Расcчитываем средний радиус спирали замедляющей системы по формуле:

,(1.1)

гдеа - средний радиус спирали , см;

- длина волны, соответствующая середине рабочего диапазона, см;

- ускоряющее напряжение, В.

Длина волны

, соответствующая середине рабочего диапазона определяется по формуле:

,(1.2)

(см),

тогда

(см).

Рассчитываем шаг спирали, используя формулу имеющую следующий вид:


,(1.3)

(см).

Используя соотношение

, определили величину диаметра проволоки. Радиус проволоки выбирают малым по сравнению с шагом спирали для получения наибольшего поля, взаимодействующего с электронным потоком, поэтому

(см)(1.4)

Выбираем ближайший стандартный диаметр проволоки

см.

Определяем радиус внешнего проводника (экрана) замедляющей системы из соотношения:

,(1.5)

Принимаем

=1,5 (см).

Рабочая длина замедляющей системы рассчитывается из выражения:

,(1.6)

где

- коэффициент усиления по мощности,

С - параметр усиления.


,(1.7)

где W – волновое сопротивление, Ом;

- ток системы, А.

Выбираем отношение радиуса потока

к среднему радиусу спирали замедляющей системы:

,(1.8)

которое определяет наибольшее взаимодействие электронного потока с продольной составляющей

.

Находим волновое сопротивление:

(Ом),

гдес - скорость света в вакууме, см/с;

- скорость электрона, см/с.

Величина плотности тока катода

для малошумящих ламп меньше значений
, поэтому ток системы:

,(1.9)

Выбираем плотность тока

(мА/см2 )

Радиус электронного потока:


(см),

тогда ток электронного потока:

(A).

Найденные значения W и

определяют следующую величину параметра усиления:

Определяем величину

: используя характеристическое уравнение, записанное для решения методом основ
находим величину параметра А :

,(1.10)

где параметр объемного заряда 4Q при выбранных значениях

и
равен 7,2, тогда определяем величину
.

,(1.11)

где

- параметр расталкивания, рассчитанный по формуле:

,(1.12)


где

- собственная частота колебаний электронного потока бесконечного сечения,

,(1.13)

(Гц).

Тогда

=0,011

Подставляя величины 4Q ,

и
в выражение для
получим:

,

тогда

,

.


Дарим 300 рублей на твой реферат!
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!
Мы дарим вам 300 рублей на первый заказ!