регистрация /  вход

Тахометр индукционный (стр. 1 из 5)

АГЕНТСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра: « Приборостроение, метрология и сертификация»

Допустить к защите «_____»______________200

Руководитель__________________

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине:

«Физические основы получения информации»

Тема курсовой работы:

Тахометр индукционный

Проект выполнил студент Есипов Андрей Олегович

Шифр 060323 группа 31-П факультет ФЭиП

Специальность 200101

Курсовая работа защищена с оценкой _____________

Студент Есипов А.О.

Руководитель Мишин В.В.

Члены комиссии _______________________/ФИО/

_______________________/ФИО/

Орел 2008


АННОТАЦИЯ

Целью данного курсового проекта является проектирование индукционного тахометра. Для выполнения данной цели был проведен обзор тахометров различного принципа действия. Для каждого преобразователя были выделены достоинства и недостатки. После анализа преобразователей, один из них был взят за основу для дальнейшего проектирования.

В работе произведены расчеты основных параметров и элементов конструкции индукционного тахометра. На основании расчетов создан сборочный чертеж и деталировка. По результатам проектирования были сделаны выводы, которые занесены в заключение.

Цель курсового проекта была достигнута. Разработан индукционный тахометр, расчетные характеристики которого удовлетворяют заданным.


СОДЕРЖАНИЕ

ВВЕДЕНИЕ. 5

1 ОБЗОР ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ ВРАЩЕНИЯ.. 6

1.1 Оптический тахометр. 6

1.2 Центробежные тахометры.. 7

1.3 Датчики с переменным магнитным сопротивлением. 9

1.4 Электрические тахометры постоянного тока. 10

1.5 Индукционный тахометр. 12

1.6 Вывод. 14

2 ТЕХНИЧЕСКОЕ ЗАДАНИЕ. 15

2.1 Введение. 15

2.2 Источники разработки. 15

2.3. Технические требования. 15

2.3.1 Состав изделия. 15

2.3.2 Технические параметры.. 16

2.3.3 Принцип работы.. 16

2.3.4 Условия эксплуатации. 16

3 КОНСТРУКТОРСКИЙ РАЗДЕЛ.. 18

3.1 Разработка структурной схемы.. 18

3.2 Расчет функции преобразования. 19

3.3 Расчет тепловых расширений. 26

3.4 Соединение зубчатой шестерни и вала. 29

3.5 Расчет погрешностей. 30

ЗАКЛЮЧЕНИЕ. 32

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ.. 33

Приложение А.. 35

Приложение Б. 37

Приложение В.. 38

Приложение Г. 39

Приложение Д.. 40

Приложение Е. 41


ВВЕДЕНИЕ

Измерительный преобразователь – это техническое устройство, построенное на определенном физическом принципе действия, выполняющее одно частное измерительное преобразование. Работа измерительных преобразователей протекает в сложных условиях, так как объект измерения – это, как правило, сложный, многогранный процесс, характеризующийся множеством параметров, каждый из которых действует на измерительный преобразователь совместно с остальными параметрами. Нас же интересует только один параметр, который называем измеряемой величиной, а все остальные параметры процесса считаем помехами.

Принцип действия индукционных преобразователей основан на использовании явления электромагнитной индукции. Индукционные преобразователи широко применяются для измерения параметров магнитных полей, частоты вращения, линейных и угловых скоростей, параметров вибрации и сейсмических колебаний, расхода жидких веществ.

Погрешность индукционных преобразователей в значительной степени зависит от режима, в котором они работают. Наибольшая погрешность возникает в режиме, при котором через нагрузку течет значительный ток.

Основные тенденции, характерные для современной техники – это повышение точности и расширение частотного диапазона измеряемых величин. Эти тенденции в полной мере относятся к индукционным измерительным преобразователям, область применения которых в последние годы значительно расширилась, а метрологические характеристики благодаря ряду новых интересных решений намного улучшились.

Индукционные преобразователи обладают высокой надежностью и высокими метрологическими и эксплуатационными характеристиками.

1 ОБЗОР ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ ВРАЩЕНИЯ

Обзор преобразователей частоты вращения представлен на листе 1 графической части курсового проекта.

1.1 Оптический тахометр

В наиболее простой форме оптический тахометр состоит из источника света и оптического приемника — фотодиода или фототранзистора.

Вращающееся тело либо снабжают отражающими метками расположенными регулярно по окружности, на которые направляется световой пучок, либо соединяют с диском, имеющим попеременно прозрачные и непрозрачные сектора, который располагают между источником и приемником света. Получая модулированный скачкообразными изменениями отражения или пропускания поток, фотоприемник выдает электрический сигнал с частотой, пропорциональной скорости вращения, и с амплитудой, не зависящей от этой скорости.

Рисунок 2 – Принципиальная схема конического тахометра

Диапазон измеряемых скоростей зависит, с одной стороны, от числа скачков оптических свойств (риски, щели, прозрачные сектора, нанесенные на диск или на вращающееся тело), а с другой — от полосы пропускания приемника и связанных с ним электрических схем. Для измерений малых скоростей используются диски с большим числом щелей (от 500 до нескольких тысяч); в измерениях больших скоростей, например 105 – 106 об/мин в случае ультрацентрифуг, диск имеет только одну щель, и максимальная измеряемая скорость определяется верхней граничной частотой электрической цепи.

Достоинства оптического тахометра: простота конструкции, линейная зависимость между входным и выходным сигналом, независимость выходного сигнала фотоприемника от скорости вращения, широкий диапазон измерений.

Недостатки: возможно загрязнение отражающих меток или секторов диска, малая надежность, громоздкость, сложность изготовления.

1.2 Центробежные тахометры

Центробежные тахометры выполняются в двух вариантах: конический (рисунок 2) и кольцевой (рисунок 3).

В коническом тахометре на шарнирах, вращающихся вместе с осью, установлены грузы m , которые под действием центробежных сил расходятся, перемещая вдоль оси муфту 1 и сжимая пружину 2.

Рисунок 2 – Принципиальная схема конического тахометра

Если обозначить у - перемещение муфты и у0 - начальную длину пружины (при щ = 0), то зависимость у от угловой скорости щ будет иметь вид


(1)

где

– чувствительность прибора;

n , т, r 0 и c 1 - соответственно число грузов, масса груза, радиус муфты и коэффициент жесткости пружины.

Из выражения (1) следует, что центробежный тахометр имеет квадратичную характеристику.

В кольцевом тахометре при не вращающейся оси (щ = 0) плоскость кольца наклонена по отношению к оси на угол а0 (рисунок 3). При вращении оси кольцо стремиться занять положение, перпендикулярное оси вращения, однако этому препятствует пружина 2. Перемещение муфты 1 пропорционально приращению угла отклонения кольца

(2)

где

– чувствительность кольцевого тахометра;

m , r , c 1 соответственно масса и радиус кольца, коэффициент жесткости пружины.

Рисунок 3 – Принципиальная схема кольцевого тахометра

Достоинства центробежных тахометров: показание не зависит от направления вращения; достаточные по величине силы, сообщающие движение стрелочному механизму, допускают приведение в действие дополнительных управляющих и регулирующих устройств.

Недостатки центробежных тахометров: недистанционность, значительные погрешности и технологические трудности изготовления и регулировки, показания такого вида тахометров начинаются не от нулевого, а от некоторого минимального значения.

Максимальная частота вращения серийно впускаемых центробежных тахометров составляет 10000 об·мин-1 .

1.3 Датчики с переменным магнитным сопротивлением

В датчиках такого типа измерительная катушка снабжается магнитным сердечником, на который воздействует поток индукции постоянного магнита. Катушка помещена перед диском (полюсное колесо) или перед вращающимся ферримагнитным телом. Последовательность скачков магнитных свойств (зубья, щели, отверстия) диска или вращающегося тела вызывает периодическое изменение магнитного сопротивления в магнитной цепи катушки, которое наводит в ней ЭДС с частотой, пропорциональной скорости вращения. Амплитуда этой ЭДС также зависит от расстояния между катушкой и вращающимся телом и от скорости вращения.