Смекни!
smekni.com

Проектирование активных RC-фильтров (стр. 1 из 3)

Санкт-Петербургский государственный

электротехнический университет

Кафедра САПР

Пояснительная записка

Курсовая работа

на тему:

«Проектирование активных

RC-фильтров»

Преподаватель Хорьков Г. И.

Студент гр. 5361 Трухин С. Н.

-1997-

Введение

Активные RC-фильтры относятся к широко распространенному классу частотно избирательных цепей и , наряду с построенными на основе их использования генераторами синусоидальных колебаний , находят применение в системах передачи информации , автоматического управления и регулирования , технике измерения и различного рода функциональных преобразователях . Активные RC-фильтры (АФ) содержат пассивные избирательные RC-цепи и активные устройства (усилители , гираторы , конверторы отрицательного сопротивления) , при помощи которых получают требуемую добротность звеньев второго порядка .

Основной задачей при проектировании АФ является получение заданной формы амплитудно-частотной характеристики .

Цель курсового проекта состоит в практическом ознакомлении с основами синтеза активных RC-фильтров и генераторов синусоидальных сигналов , способами ручного и машинного анализа характеристик разработанного устройства .

Проектирование активных RC-фильтров

Аппроксимация

Под электрическим фильтром понимается четырехполюсник , модуль передаточной функции которого остается практически постоянным в определенной области частот , называемой полосой пропускания , и достаточно резко падает с удалением от границ этой области . Границы области пропускания именуются граничными частотами . Область частот с достаточно большим подавлением амплитуды сигнала называется полосой заграждения . Между полосами пропускания и заграждения находится переходная область .

Синтез частотно-избирательных цепей связан с решением двух задач :

—задачи образования функции , так называемой аппроксимации функции , по исходным данным ;

—задачи реализации найденной аппроксимирующей функции электрической цепью .

В данной работе проектируется фильтр нижних частот (ФНЧ) и используется аппроксимация по Чебышеву .

Исходными данными для проектирования фильтра на этапе аппроксимации обычно

являются :

d - определяет неравномерность коэффициента передачи фильтра в

полосе пропускания;

w1,w2 - определяют ширину промежуточной зоны между полосой

задерживания и полосой пропускания ;

êH(jw2) ê - модуль коэффициента передачи фильтра на границе полосы

задерживания .

Техническое задание к курсовому проектированию

Вид аппроксимации - аппроксимация по Чебышеву

Входной сигнал - в цифровой форме

d<0.15

êH(jw2)ï <0.08

F1=0.50 kHz

F2=0.75 kHz

Uвх.макс = 2.0 В

Uвых.макс = 12 В

D = 65 дБ

Rн = 10 кОм

Rг = 2 кОм

Температурный диапазон +5...+35 °C

Аппроксимация по Чебышеву.

При аппроксимации по Чебышеву используется следующее выражение для H(jwн) :

где Un(wн) = cos (n arcos wн) — полином Чебышева .

Нахождение порядка полинома n при аппроксимации по Чебышеву производится следующим образом .

На границе полосы пропускания полагаем wн1 = 1, отсюда

Т. к. H(jwн2) << 1, то

Т. о. порядок n полинома находится из следующего выражения :

Т. к. wн2 = 1.46 ( f1 = 0.5 кГц ,f2 = 0.73 кГц ) , то

Примем n = 3

Полюса передаточной функции H(pн) при аппроксимации по Чебышеву имеют вид

p1,2 = -0.235±j0.937

p3 = -0.470

Расположение корней на элипсе

Данные значения получены для pн

Аппроксимирующая функция имеет вид



Расчет АЧХ и ФЧХ

Графики амплитудно- и фазо- частотных характеристик передаточных функций первого и второго звеньев .

АЧХ первого звена

ФЧХ первого звена

АЧХ второго звена

ФЧХ второго звена

АЧХ двух звеньев в целом

ФЧХ двух звеньев в целом

Расчет схемы в системе Pspice .

Графики АЧХ и ФЧХ для 1го звена

Графики АЧХ и ФЧХ для 2го звена .

Графики АЧХ , ФЧХ и статическая характеристика для системы в целом .

Расчет чувствительности схемы на наихудший случай .

Расчет чувствительности схемы при максимальном разбросе значений резисторов :

Амплитудно - частотная характеристика

Фазо - частотная характеристика

Расчет чувствительности схемы при максимальном разбросе значений конденсаторов :

Амплитудно - частотная характеристика

Фазо - частотная характеристика

Расчет чувствительности схемы при максимальном разбросе значений резисторов и конденсаторов .

Амплитудно - частотная характеристика

Фазо - частотная характеристика

Расчет динамического диапазона схемы

Выражение для расчета динамического диапазона :

D= 20 * log (Uвых.макс / Uвых.0)

Uвых.макс = 12 В

Uвых0 возьмем из графика статической характеристики .

Uвых0 = 8*(10^-6)

Полученное значение динамического диапазона :

D=123

На вход схемы ставится Цифро-аналоговый преобразователь (двенадцатиразрядный

ЦАП К572ПА2А ), так как в техническом задании указано условие цифровой формы входного сигнала .

Для согласования напряжения на выходе ЦАП и входе фильтра на выход ЦАП ставится ОУ с резистором в цепи обратной связи .

R=Uвх.фильтра / I вых.цап = 1/(0.0008)=1.25 Ком

Схема фильтра

Обозначение Наименование Количество РезисторыR1 МЛТ - 0.125 - 10к±5% 1R2 МЛТ - 0.125 - 87к±5% 1R3,R8,R9 МЛТ - 0.125 - 1к±5% 3R4 МЛТ - 0.125 - 1.3к±5% 1R5 МЛТ - 0.125 - 5к±5% 1R6 МЛТ - 0.125 -7к±5% 1 Конденсаторы С1 К10-50-75n-25В±10% 1 С2 К10-50-1.6n-25В±10% 1 С3 К10-50-100n-25В±10% 1 Операционные усилителиU1,...U3 LF 411 3

Выходной файл данных Pspice

**** 12/14/97 08:52:23 ********* PSpice 5.1 (Jan 1992) ******** ID# 62539 ****

* C:&bsol;PS-PICE&bsol;kurs_pro.sch

**** CIRCUIT DESCRIPTION

******************************************************************************

* Schematics Version 5.1 - January 1992

* Sun Dec 14 06:00:06 1997

* From [SCHEMATICS NETLIST] section of msim.ini:

.lib

.INC "C:&bsol;PS-PICE&bsol;kurs_pro.net"

**** INCLUDING C:&bsol;PS-PICE&bsol;kurs_pro.net ****

* Schematics Netlist *

R_R1 $N_0003 $N_0002 r 10k

R_R2 $N_0002 $N_0004 r 87k

R_R3 0 $N_0005 r 1k

C_C1 $N_0002 $N_0005 c 75n

C_C2 0 $N_0004 c 1.6n

R_R4 $N_0005 $N_0007 r 1.3k

R_R5 0 $N_0008 r 6k

v_V4 0 $N_0009 dc 15

v_V5 $N_0010 0 dc 15

v_V1 $N_0011 0 dc 1 ac 1

v_V2 $N_0012 0 dc 15

v_V3 0 $N_0013 dc 15

C_C3 0 $N_0014 c 100n

R_R6 $N_0011 $N_0014 r 7k

X_U29 $N_0014 $N_0003 $N_0012 $N_0013 $N_0003 LF411

X_U42 $N_0004 $N_0005 $N_0010 $N_0009 $N_0007 LF412

X_U43 $N_0008 out $N_0017 $N_0018 out LF411

v_V7 0 $N_0018 dc 15

v_V8 $N_0017 0 dc 15

R_R8 0 out r 1k

R_R9 $N_0007 $N_0008 r 1k

.model r res(r=1 dev=5%)

.model c cap(c=1 dev=10%)

.wcase ac V([out]) Ymax

**** RESUMING kurs_pro.cir ****

.INC "C:&bsol;PS-PICE&bsol;kurs_pro.als"

**** INCLUDING C:&bsol;PS-PICE&bsol;kurs_pro.als ****

* Schematics Aliases *

.ALIASES

R_R1 R1(1=$N_0003 2=$N_0002 )

R_R2 R2(1=$N_0002 2=$N_0004 )

R_R3 R3(1=0 2=$N_0005 )

C_C1 C1(1=$N_0002 2=$N_0005 )

C_C2 C2(1=0 2=$N_0004 )

R_R4 R4(1=$N_0005 2=$N_0007 )

R_R5 R5(1=0 2=$N_0008 )

v_V4 V4(+=0 -=$N_0009 )

v_V5 V5(+=$N_0010 -=0 )

v_V1 V1(+=$N_0011 -=0 )

v_V2 V2(+=$N_0012 -=0 )

v_V3 V3(+=0 -=$N_0013 )

C_C3 C3(1=0 2=$N_0014 )

R_R6 R6(1=$N_0011 2=$N_0014 )