Смекни!
smekni.com

Розрахунок показників надійності інтегральних схем (стр. 2 из 3)

1.2 Відмови внаслідок зарядової нестабільності в шарі окислу та на межі окисла з напівпровідником.

Специфічною особливістю планарних приладів є те, що їх активні і пасивні компоненти формуються у виді багатошарових структур з різними електрофізичними властивостями. Найбільш істотна властивість таких структур - локалізація неконтрольованого заряду в об’ємах шарів структур і на поверхні їх розділу. Величина цих зарядів і їхня стабільність багато в чому визначають надійність напівпровідникових приладів і інтегральних мікросхем, що виготовляються по планарній технології. Схема розподілу локалізованих зарядів у структурі монокристалічний кремній — двоокис кремнію приведений на рис. 1.3.

Тут представлені:

заряди на поверхні розділу системи кремній — двоокис кремнію;

заряди в приповерхній області двоокису кремнію;

заряди в об'ємі двоокису кремнію;

заряди на поверхні плівки двоокису.

Рисунок 1.3 Структура зарядових станів у шарі окисла на кремнії:

1 - границя розділу кремній-двоокис кремнію; 2 - поверхня окисла; ± - електрони і дірки; □ - пастки електронів і дірок; R+X - позитивні і негативні іони домішок, забруднень; ○ - іонізовані атоми надлишкового кремнію в окислі.

Наявність зарядів на поверхні розділу системи Si-SiО2 обумовлено тим, що кристалічні ґрати кремнію в поверхні розділу обриваються і поверхневі атоми мають ненасичені електронні зв'язки, що утворять донорні та акцепторні рівні в забороненій зоні кремнію. Концентрація таких рівнів на вільній поверхні кремнію лежить у межах 1015 см-2. При вирощуванні на поверхні кремнію плівки SiО2 Щільність поверхневих станів зменшується і досягає 1011...1012 см-2. Зі зміною положення рівня Фермі заряд, що локалізується на поверхневих енергетичних рівнях, дуже швидко змінюється по величині. Тому ці поверхневі стани і заряди, що локалізуються на них, називають швидкими.

У самої границі двоокису кремнію з кремнієм на відстані порядку 20 нм у глиб плівки двоокису кремнію розташовується фіксований заряд із щільністю порядку 1011...1012 см-2. Природа цього заряду зв'язана з механізмом утворення окисної плівки на поверхні монокристалічного кремнію. У процесі окислювання кремнію на його поверхні утворяться моношари SiО2 і надалі реакція окислювання кремнію йде під цими шарами. При цьому для вступу в реакцію атоми кисню проникають через окісні шари, що утворилися. Тому атоми кремнію виявляються в надлишку в приповерхніх шарах SiО2. Вони, маючи незаповнені зв'язки, і створюють додатковий фіксований заряд, що не залежить від зовнішніх електричних полів і температури. Тому цей вид зарядів зветься повільним.

Розглянуті вище структурні дефекти в окісній плівці можуть бути місцями локалізації й одночасно джерелами неконтрольованих зарядів у ній. Основні джерела таких зарядів: кисневі вакансії в структурі SО2, іони водню, іони металів і особливо високорухливі іони натрію (які створюють переважно позитивний заряд у шарі двоокису кремнію). Усі ці заряди під дією електричних полів можуть переміщатися в шарі двоокису кремнію в напрямку до границі розділу з кремнієм і назад. Концентрація зарядів може істотно мінятися в залежності від обробки структур у різних середовищах при виготовленні. Значні зміни в місці розташування зарядів і їхньої концентрації відбуваються при експлуатації приладів (у тому числі, в умовах радіаційних впливів).

Утворення поверхневих зарядів зв'язано з різними забрудненнями, адсорбованими на поверхні шару двоокису кремнію. Їхньою особливістю є висока рухливість, що дозволяє зарядам переміщатися на великі відстані по поверхні окисла під дією прикладеної напруги. При підвищенні температури активних областей приладу і навколишнього середовища в результаті десорбції забруднень концентрація поверхневих зарядів може змінюватися в значних межах.

Усі розглянуті вище заряди, взаємодіючи з зарядами активних областей напівпровідникових структур, спотворюють конфігурацію р-n переходів, викликають утворення інверсійних шарів, що в кінцевому рахунку приводить до нестабільності електричних параметрів приладів, до поступових і раптових відмов.

1.3 Відмови внаслідок електричного пробою окисла та p-n переходу.

У сучасних МДН-структурах товщина підзатворного окисла досягла 20 нм і менше. При подальшому масштабуванні приладів із довжиною каналу до 0,25 нм товщина підзатворного окисла, очевидно, досягне 5 нм, що приведе до різкого зростання електричного поля в діелектрику до рівня, при якому наступить внутрішній пробій. Для окісних тонких плівок товщиною близько 10 нм гранична напруга пробою складає 8...10 мВ. Найбільш розповсюдженою моделлю внутрішнього пробою є модель ударної іонізації — рекомбінації. Суть її полягає в наступному.

Під дією електричного поля вільний електрон при прямуванні в окислі достатньої товщини на довжині вільного пробігу встигає одержати енергію для ударної іонізації атомів матриці і створення електронно-діркових пар. Внаслідок більшої рухливості електрони випереджають у русі дірки, залишаючи позаду хмару позитивно заряджених носіїв заряду, що створює додаткове прискорююче поле на шляху наступної порції електронів. Таким чином, у системі ударної іонізації з'являється позитивний зворотний зв'язок, що сприяє лавинному розмноженню носіїв і настанню стану пробою. Велика імовірність виникнення такої самої ситуації в системах багатошарової металізації. Товщина шарів ізоляції в цих системах істотно більше, ніж товщина підзатворного діелектрика. Однак якість цих шарів багато нижче головним чином через нерівності поверхні металевих і полікремнієвих доріжок. Тому в місцях звужень діелектричних шарів і на вістрях виступів можуть виникати підвищені напруженості електричного поля, що приводять до пробою.

Наступним фізичним механізмом, викликаним ростом електричного поля в тонких електричних шарах і приладах при масштабуванні, є механізм інжекції гарячих електронів із кремнію в окісний шар. Гарячі електрони - це высокоенергетичні носії, що утворяться при лавинному прибої p-n переходу чи в області підвищеного електричного поля поблизу стоку МДН-транзистора з коротким каналом.

Інжекція і захоплення гарячих носіїв відповідальні за деградацію коефіцієнта підсилення біполярних транзисторів. Для МДН-транзисторів при масштабуванні їхніх геометричних розмірів до 1 мкм і менш захоплення гарячих носіїв є визначальним чинником, що має фундаментальне значення в справі забезпечення стабільності роботи приладів.

Інжекція гарячих носіїв може йти декількома шляхами, у тому числі за рахунок виникнення гарячих електронів у каналі й в об'ємі напівпровідника. Гарячі електрони в каналі — це електрони, що йдуть від джерела до стоку. У режимі насичення в n-канальному МДН-транзисторі створюється велике електричне поле поблизу стоку. Під його впливом електрони при проходженні від джерела до стоку здобувають значну енергію. У результаті розсіювання на атомах ґрат створюється потік електронів з випадковим розподілом швидкостей, що містить визначену частку електронів, здатних перебороти потенційний бар'єр на границі розділу системи кремній-двоокис кремнію і проникнути в підзатворний окисел. Встановлено, що струм гарячих носіїв має експонентну залежність від напруги на затворі.

Електричне поле в окислі протидіє інжекції гарячих електронів, тому гарячі електрони зосереджуються в безпосередній близькості до точки перекриття каналу, розташованого в стоку. При низьких температурах ефект інжекції гарячих електронів значно вище, тому що розсіювання на коливаннях ґрат знижується.

Іншим джерелом гарячих електронів є термогенерація носіїв в об'ємі напівпровідника. Електрони підкладки р-типа прискорюються позитивною напругою на затворі, переміщуючись в межах збідненої області, переборюють потенційний бар'єр на границі розділу системи кремній-двоокис кремнію.

Третім джерелом гарячих електронів може бути ударна іонізація і генерація електронно-діркових пар. Якщо ударна іонізація відбувається в результаті дії електронів у каналі, то в цьому випадку найбільш ймовірна інжекція в окисел дірок, що рухаються по напрямку електричного поля. З іншого боку, електронно-діркові пари генеруються дірковим струмом підкладки і прискорені електрони можуть инжектуватися в окисел так само, як і електрони, що виникають при термогенерації.

При інжекції гарячих електронів у підзатворний окисел у середньому один з 105 інжектованих електронів захоплюється на пастках. Інший потік гарячих електронів досягає затвора і збирається на ньому. У зв'язку з тим, що в основному гарячі електрони виникають біля стоку, найбільш чуттєвою характеристикою до цього механізму відмови є зворотна гілка вольт-амперної характеристики транзистора за рахунок збільшення граничної напруги. Зокрема, у n-канальних МДН-приборах це виявляється у вигляді значного позитивного зрушення зворотної гілки вольт-амперної характеристики.

Одночасно зі зміною граничної напруги під дією гарячих електронів відбувається деградація провідності каналу, що викликається неоднорідним розподілом пасток в окислі, що захопили електрони, чи утворенням нових заряджених станів на поверхні розділу системи кремній-двоокис кремнію.