Смекни!
smekni.com

Модернизация приборов ультразвукового контроля труб (стр. 2 из 5)

Для ультразвуковых исследований могут применяться различные принципы и эффекты, основанные на эффектах дифракции света, голографии, поверхностного рельефа и др. Однако импульсные эхоскопы имеют ряд преимуществ перед устройствами других типов. С их помощью возможно формирование эхоизображений при слабых эхосигналах, т. е. могут быть применены ультразвуковые импульсы малой мощности, практически безвредные для живых организмов.

В последнее время благодаря преимуществам этих приборов они получили в мировой практике особенно бурное развитие, как в плане технического усовершенствования, так и расширения областей применения. Анализ современных достижений в области ультразвуковой визуализации показывает, что устройства этого типа можно считать основным типом ультразвуковых эхоскопов предназначенных для исследований и дефектоскопии.

Количество информации, получаемой с помощью ультразвуковых эхоскопов, их точность и быстродействие определяются параметрами зондирующих импульсов, характеристиками ультразвуковых преобразователей, а также способами и характеристиками устройств обработки и оценки параметров эхо - сигналов, несущих информацию о свойствах сред. Для быстрого электрического управления ультразвукового сканирования все шире применяют встроенные микропроцессорные и внешние вычислительные устройства. Особенности ультразвуковых эхоскопических дефектоскопов со сканированием определяется особенностями исследуемых объектов, условиями ввода ультразвука, а также контролируемыми параметрами.

В эхоскопической дефектоскопии в основном применяют методы ручного или автоматического механического сканирования. Электрический коммутационный или смешанный коммутационно-механический методы сканирования находят применение при исследовании тонкостенных, протяженных объектов, например листовых материалов и труб. Электрическое управление характеристиками направленности пьезопреобразователей используется при исследовании объемных (толстостенных) объектов. Во всех этих случаях применяется иммерсионный или контактный методы связи объекта с электроакустическими преобразователями. Так как реализация хорошего акустического контакта при перемещении преобразователя во многих случаях является довольно сложной задачей с точки зрения контроля этого контакта, в ультразвуковых дефектоскопах иногда используются дополнительные акустические каналы.


1. ОБЗОР СУЩЕСТВУЮЩИХ ДЕФЕКТОСКОПОВ

1.1 Анализ приборов для ультразвукового контроля сварных труб, на Челябинском трубопрокатном заводе, установка УД-82УА

Одна из применяемых установок для неразрушающего контроля сделана на базе автоматизированной эхоскопической установке УД-82УА [ ] и предназначена для контроля сварных швов труб большого диаметра. В состав этой установки может входить до четырех каналов ультразвукового зондирования, содержащих по два электроакустических преобразователя, один из которых обеспечивает ввод ультразвука под углом 40--50 градусов к поверхности трубы, а другой под углом90 градусов. Второй преобразователь в каждом канале служит для контроля акустического контакта между преобразователями и поверхностью трубы. Этот контроль основан на фиксации эхо-сигналов, отраженных от поверхности стенки. При контроле сварных швов преобразователи устанавливаются в устройства ориентации, обеспечивающие их юстировку относительно шва при реализации различных схем прозвучивания и корректировку угла ввода ультразвука в пределах +-5 градусов при изменении акустических или геометрических параметров контролируемых изделий, а также при изменении температуры. Для повышения разрешающей способности и чувствительности этих дефектоскопов в них используются генераторы зондирующих импульсов с модуляцией частоты повторения импульсов в пределах 20%. Частотная модуляция позволяет уменьшить интерференционные помехи и тем самым повысить вероятность обнаружения дефектов. Этим дефектоскопом обеспечивается контроль сварных соединений при толщинах стенок от 4 мм до 40 мм Скорость продольного сканирования до 0,5 м/с.

При ультразвуковом контроле труб используется поступательное движение трубы, при этом блок с акустическими преобразователями неподвижен. Ниже приведена обобщенная структурная схема импульсного ультразвукового дефектоскопа сварных швов.

СИГНАЛ О НАРУШЕНИИ КОНТАКТА

ОТМЕТКА О ДЕФЕКТЕ

Рисунок 1 - Структурная схема ультразвукового дефектоскопа УД-82УА.

1.2 Установка КРАУТКРАМЕР и технологический цикл контроля сварных швов

Другая, применяемая установка немецкой фирмы Крауткремер тип KS 3000 имеет восемь каналов, работающих как в совмещенном, так и в раздельно - совмещенном режиме. Принцип работы установки в этих режимах состоит в следующем: при совмещенном режиме пьезопреобразователь служит как для излучения, так и для приема эхо - сигнала; при раздельном режиме в прозвучивании сварного соединения используют два пьезопреобразователя, один служит для излучения ультразвука, другой для приема ультразвукового сигнала. Таким образом, на установке Крауткремер удаётся решить проблему контроля акустического контакта и контроля сварного соединения с помощью одних и тех же пьезопреобразователей. Это достигается с помощью раздельной во времени работы акустических каналов, т.е. каждый канал работает в строго определенном такте цикла контроля.

Схема расположения пьезопреобразователей относительно сварного соединения во время технологического контроля приведена на рисунке.

Основные типы дефектов, контролируемые на технологической установке Крауткремер - это непровары, пустоты и посторонние включения в сварном шве, расслоение основного металла в околосварной зоне (зона термического влияния). И в зависимости от этого и от последовательности работы каналов на установке различают следующие типы конфигурации: L-форма; X-форма; K-форма. Ниже приведена последовательность работы по тактам, а также функции выполняемые каждым пьезопреобразователем (Рис.). Цикл контроля имеет шесть тактов, из которых два последних используются для контроля акустического контакта, остальные для контроля качества сварного соединения.

Визуальная информация о наличии и величине дефекта, выводится на экран осциллографической трубки в реальном масштабе времени . На экране также отображаются стробирующие импульсы (строб-импульс щуп), определяющие зону контроля. Рассматриваемые приборы относятся к приборам с одномерной ультразвуковой визуализацией, при которой определяются амплитуда и момент времени приёма эхо - сигнала или теневого сигнала, полученных зондированием исследуемой среды по одному направлению ультразвукового луча. Такие приборы обеспечивают формирование одномерных эхограмм так называемого А-типа, характеризующих расположение прозвученных неоднородностей среды по одной продольной координате. Ниже приведены осциллограммы работы дефектоскопа при настройке на эталоне.

Временные интервалы задаются с учетом конструктивных особенностей установки рабочей головки с пьезопреобразователями, углом ввода ультразвукового луча и скорости ультразвука в материале трубы. Оптимальное расстояние от зоны контроля до пьезопреобразователя L составляет 9,6 толщин листа H трубы, например для листа H = 15 мм.

L = 9,6 * H = 9,6 * 15 = 144 мм.

Скорость ультразвука в стали составляет V = 5920 м/сек. Для такой скорости период развертки, с учетом прямого и обратного хода ультразвукового луча будет

Т4 = 2 * L / 5920 м/cек = 48.7 мксек.

Ширина сварного шва D для толщины листа H = 15 мм. D = 15 мм., таким образом длительность строб-импульса Т4 - Т3 будет

Т4 - Т3 = 2 * D / 5920 м/сек. = 5 мксек.


2. ВЫБОР И ОБОСНОВАНИЕ ФУНКЦИОНАЛЬНОЙ СХЕМЫ БЛОКА УПРАВЛЕНИЯ УЛЬТРАЗВУКОВЫМ ДЕФЕКТОСКОПОМ

Современные Ультразвуковые эхоскопы позволяют не только формировать эхоизображения, но и измерять по ним необходимые структурно - топологические и динамические характеристики исследуемых объектов, а также осуществлять функции анализа и сохранения измеряемых значений. Такие эхоскопы по существу являются информационно-измерительными системами (ИИС) и они обобщенно могут быть представлены следующей структурной схемой.