Электромагнитные и тепловые методы контроля РЭСИ

Министерство образования Республики Беларусь

Белорусский государственный университет информатики и

радиоэлектроники

кафедра РЭС

РЕФЕРАТ

на тему:

«Электромагнитные и тепловые методы контроля РЭСИ»

МИНСК, 2008

Электромагнитные методы

Электромагнитные методы неразрушающего контроля основаны на анализе взаимодействия электромагнитного поля вихретокового преобразователя с электромагнитным полем вихревых токов, наводимых в контролируемом объекте. К особенностям вихретокового метода неразрушающего кон­троля относят:

- электрическую природу сигнала и быстродействие, что позволяет легко ав­томатизировать контроль;

- значительную скорость и простоту контроля;

- отсутствие необходимости электрического и даже механического контакта преобразователя с контролируемым объектом;

- возможность контроля слоев металла небольшой толщины, а также быстро движущихся изделий.

Существуют три основных метода возбуждения вихревых токов в объекте:

- помещение изделия в катушку (метод проходной катушки);

- накладывание катушки на изделие (метод накладной катушки);

-помещение изделия между первичной и вторичной катушками (экранный метод).

При пропускании через катушку переменного тока определенной частоты магнитное поле этой катушки изменяет свой знак с той же частотой. Если поме­стить изделие в поле этой катушки, то в нем возбуждаются вихревые токи, поле которых оказывает действие на поле возбуждающей катушки.

Существует несколько методов вихретокового контроля (ГОСТ 18353-79): амплитудный, фазовый, частотный, многочастотный.

Наибольшее применение нашли амплитудный и частотный методы.

Амплитудный метод применяют при наличии двух изменяющихся факторов, например, одновременном изменении зазора и электрической проводимости, один из которых нужно исключить. Такое исключение осуществляется фазовой настройкой.

Частотный метод часто используют, например, при измерении толщины сте­нок труб, когда необходимо отстроишься от измерения наружного диамера или электрической проводимости.

По чувствительности к трещинам вихретоковая дефектоскопия уступает маг­нитной. Выпускаемые отечественные электроиндуктивные дефектоскопы типа ДНМ-500, ДНМ-2000 с динамическим модуляционным методом регистрации, в которых накладная катушка вращается вокруг контролируемого изделия, позво­ляют получить сигнал большой амплитуды и выявить дефект с наименьшим полем рассеяния.

Указанные приборы применяют для выявления трещин протяженностью до 0,8 мм и глубиной > 0,1 мм в поверхностных слоях деталей под слоем краски и эмали, а также изделий из жаропрочных и коррозионностойких сталей.

Широкое распространение получили дефектоскопы многоцелевого назначе­ния типа ЭМИД. Эти приборы комплектуются набором проходных катушек - датчиков с внутренним диаметром от 5 до 100 мм, что позволяет контролировать многие изделия.

Например, для контроля труб, прутков, проволоки на наличие трещин, рако­вин, успешно применяется прибор ЭМИР-2М, в котором дефекты регистриру­ются визуально по изменениям фазы или амплитуды кривой на экране осцил­лографа, а также автоматически при наличии автоматической приставки. Ши­роко используют также дефектоскопы типа АСК-10(12), ИОС-1, ВК-ЗОС, ВД-20П, ИПП-1М, «Магнитоскоп» и др.

Тепловые методы

Тепловые методы неразрушающего контроля используют при исследовании теп­ловых процессов в РЭС, причем в большинстве случаев регистрируют поверхнос­тное тепловое или температурное поле объекта контроля, в пространственно-вре­менной структуре которого содержатся «отпечатки» внутренних геометрических или теплофизических аномалий Согласно ГОСТ 23483-79 методы тепло­вого контроля (ТК) основаны на взаимодействии теплового поля объекта с термо­метрическими чувствительными элементами (термопарой, фотоприемником, жид­кокристаллическим термоиндикатором и т.д.), преобразовании параметров поля (интенсивности, температурного градиента, контраста, лучистости и др.) в элект­рический или другой сигнал и передаче его на регистрирующий прибор.

Необходимое условие применения ТК - отличие интегральной или локальной температуры изделий от температуры окружающей среды, которое создается либо искусственно с помощью внешних источников теплового нагружения (ИТН), либо в силу естественных причин при изготовлении или функционировании изделий.


Таблица 1

Основные объекты ТК в радиоэлектронике.

Объекты ТК Дефекты Примечание
Полупроводниковые изделия (транзисто­ры, диоды, тиристо­ры) Дефекты p-n-перехода (по­верхностная деградация, электромиграция, межме­таллические соединения); неравномерная плотность тока; трещины, газовые пузыри между кристаллом и основанием, неоднород­ность состава исходного материала; дефекты тепло-отвода, диффузионной сварки; повреждения кри­сталла; обрыв проводов и короткие замыкания. При интегральном спосо­бе ТК измеряют тепловое сопротивление. Наиболее перспективно импульсное питание, при котором определяют время тепло­вой устойчивости и пере­ходную тепловую харак­теристику. Исследование температурных рельефов и двухмерных теплограмм позволяет локализовать дефекты.
Интегральные схемы Дефект теплоотвода; обрыв выводов; короткие замыка­ния; некачественная метал­лизация; сколы резистив-ной пленки; плохие адгезия и термокомпрессия; про­бой конденсаторов; объем­ные дефекты полупровод­ника. Разрешение по площади составляет 20..50 мкм. Контроль проводят с по­мощью автоматизирован­ных систем, измеряя температуру в 50.. 10 точ­ках интегральной схемы при снятой крышке.
Многослойные пе­чатные платы Утонение и коррозионный износ проводников; нека­чественная металлизация; отслоение проводников. Используют импульсный нагрев электрическим током. Температурное поле имеет сложный вид и требует наличие этало­нов.
Резисторы Локальное уплотнение; непроводящие включения; трещины. Размер обнаруживаемого дефекта 15x15 мкм.
Конденсаторы Пробой электролитических конденсаторов; замыкание слоев конденсаторов в микросхемах. ТК осложнен небольшим излучением энергии и низким коэффициентом излучения.
Сборочные единицы и блоки радиоэлек­тронных средств Неправильное включение элемента в схему; некаче­ствен-ный монтаж; неудач­ное размещение элементов на плате. ТК рекомендуется при проектировании, изго­товлении и функциони­ровании узлов. Наиболее эффективен ТК при мас­совом производстве од­нотипных узлов. Разре­шение по площади - от долей миллиметра до не­скольких сантиметров. В основе отбраковки операторное или автома­тическое сравнение те­кущей термограммы с эталонной. Оптимизацию проводят путем выбора контрольных точек и тес­тового воздействия.
Проволока Утонение; трещины Используют контактный электронагрев и бескон­тактный СВЧ-нагрев. Скорость контроля до 4 м/мин. Способ чувстви­тельности к изменению проволоки от 20 до 30 мкм.
Катодные узлы Неравномерность покрытия Повышение температуры на 50..60 К уменьшает долговечность катода на порядок. Используют градуированные кривые.
Высокотемпературные и пленочные покры­тия Отслоение от подложки, неравномерность покрытия Наиболее чувствителен нестационарный ТК.
Контроль сварки вы­водов интегральной схемы с контактными площадками микро-плат. Непроваривание выводов. При стандартном точеч­ном воздействии темпе­ратурный отклик безде­фектного соединения лежит в определенном интервале.

С помощью методов ТК можно проводить анализ теплового режима элект­ронных схем, контроль измерения параметров цепей, качества элементов, авто­матический поиск неисправностей в РЭС.

Терминология ТК определена ГОСТ 18353-79, а классификация методов ус­тановлена ГОСТ 23483-79. Для ТК применяют пассивные и активные методы.

При пассивном ТК объекты испытаний не подвергают воздействию от внеш­него источника, и в местах потенциальных дефектов механических соединений токоведущих элементов путем опрессовки, скрутки, пайки и сварки возникает дополнительное электрическое сопротивление, которое обуславливает нагрев этого участка в соответствии с законом Джоуля - Ленца (рис. 1,а). Пассив­ным способом ТК объекта испытаний, характеризующимся аномальным выде­лением теплоты в месте потенциального дефекта, контролируют сборочные еди­ницы и компоненты радиоэлектронных средств (рис. 1,б).

При активном контроле объект подвергают воздействию от внешнего источ­ника энергии (1) (рис. 1, в). До проведения контроля температура изделия во всех точках одинакова (чаще всего равна температуре окружающей среды). При нагреве изделия, тепловой поток распространяется в глубь изделия, в месте га­зового дефекта испытывает дополнительное тепловое сопротивление. В резуль­тате этого наблюдается локальное повышение температуры на нагреваемой по­верхности, а на противоположной поверхности изделия, в силу закона сохране­ния энергии, знак температурного сигнала инвертируется.

Рисунок 1 – Пассивные (а,б) и активные (в) ТК.

1 - ИТН; 2 - изделие; 3 - дефект.

Пассивный контроль в общем случае предназначен:

- для контроля теплового режима объектов контроля;

- для обнаружения отклонений от заданной формы и геометрических разме­ ров объектов контроля.


Copyright © MirZnanii.com 2015-2018. All rigths reserved.