Смекни!
smekni.com

Электропривод с вентильной машиной (стр. 3 из 4)

,
,
,
,
,
,

Значения базовых величин, относительных переменных и параметров приведены в таблице 3 приложения.

Модель вентильной машины (двигатель ДБМ150-4-1,5-2) во вращающейся системе координат, построенная по уравнениям (12) и собранная в пакете MATLAB 6.5 имеет вид (см. рис. 7).


Рис. 7. Модель вентильной машины во вращающейся системе координат.

Результаты моделирования для двигателей ДБМ150-4-1,5-2 и ДБМ185-6-0,2-2 представлены на рис. 8 и рис. 9. На вход модели подано единичное ступенчатое воздействие.

Рис. 8. Переходные процессы по моменту, скорости и продольной составляющей тока в двигателе ДБМ150-4-1,5-2.


Рис. 9. Переходные процессы по моменту, скорости и продольной составляющей тока в двигателе ДБМ185-6-0,2-2.

Переходные процессы в машине по скорости и моменту во многом совпадают с результатами моделирования в неподвижной системе координат. На рис. 7 и рис. 8 показан процесс по току

. Наличием этого тока объясняется специфика процессов в ВМ в переходных и установившихся режимах работы.

Ток

является током по продольной оси, он не создаёт момента, но в достаточной степени влияет на поток и соответственно на скорость и на общий ток потребления машины. Причиной появления этого тока является относительная электромагнитная постоянная времени
в цепи статора машины и взаимные перекрёстные связи между каналами.

Модель вентильной машины во вращающейся системе координат с учётом запаздывания в канале вращающийся трансформатор – демодулятор – фильтр

При рассмотрении характеристик вентильной машины необходимо учитывать не только параметры самого двигателя, но и параметры канала с датчиком положения ротора.

Если рассматривать двигатели типа ДБМ, то в них используются датчики положения ротора типа вращающийся трансформатор. Эти датчики по существу являются многополюсными ВТ число полюсов которых согласовано с числом полюсов ДБМ. В системах электропривода датчики ВТ используются обычно в режимах с амплитудной либо фазовой модуляцией.

В данном случае также применяются генератор несущей частоты, демодуляторы, фильтры и умножители. Напряжение с генератора несущей частоты подаётся на обмотку возбуждения ВТ. Напряжения на вторичных обмотках ВТ являются синусоидальной и косинусоидальной функцией угла поворота двигателя. Демодуляторы совместно с фильтрами отфильтровывают несущую частоту, а умножители выполняют роль преобразователей координат, преобразуя вращающуюся систему координат в неподвижную в соответствии с выражениями (9).

Полученные выше уравнения (12) не учитывают влияния запаздывания в канале ВТ-ДМ-Ф. Для учёта этого влияния определим напряжения

,
в системе координат
,
, тогда в относительных величинах получим:

,
(13)

где

,
- постоянная апериодического фильтра на выходе двухполупериодного демодулятора.

Модель вентильной машины представлена на рис. 10. Модель содержит собственно синхронный двигатель и блок Uchetzapazd, учитывающий запаздывание в канале ВТ-ДМ-Ф. Содержание этого блока представлено на рис. 11. Моделирование осуществлено для двигателей ДБМ150-4-1,5-2 и ДБМ185-6-0,2-2 и датчика положения ротора типа ВТ60.

Рис. 10. Модель вентильной машины во вращающейся системе координат с учётом запаздывания в канале ВТ-ДМ-Ф на примере двигателя ДБМ150-4-1,5-2.

Рис. 11. Блок Subsystem.


Результаты моделирования двигателей ДБМ150-4-1,5-2 и ДБМ185-6-0,2-2 для задающих сигналов

,
представлены на рис. 12, 13,14,15,16,17.

Следует отметить две принципиальные особенности вентильной машины, о которых уже говорилось выше:

1) Скорость вращения при

меньше заданной скорости холостого хода.

2) Значительный ток по продольной оси «d» несмотря на то, что напряжение

. Эти особенности при наличии дополнительного запаздывания в канале ВТ-ДМ-Ф здесь выражены в большей степени по сравнению с обычной электрической машиной.

Они объясняются наличием перекрёстных связей в самой машине, наличием постоянной времени в цепи якоря и наличием запаздывания в канале ВТ-ДМ-Ф. динамика и статика ВМ в сильной степени зависят от значения постоянной времени

. На рис. 12 и рис. 13 показаны переходные процессы при
.

Рис. 12. Переходные процессы в двигателе ДБМ150-4-1,5-2 при

.

Рис. 13. Переходные процессы в двигателе ДБМ185-6-0,2-2 при

.

Эти процессы точно повторяют аналогичные, представленные на рис. 8 и рис. 9. Результаты моделирования при

представлены на рис. 14 и рис. 15, а для
- на рис. 16 и рис. 17.

Рис. 14. Переходные процессы в двигателе ДБМ150-4-1,5-2 при

.

Рис. 15. Переходные процессы в двигателе ДБМ185-6-0,2-2 при

.

Рис. 16. Переходные процессы в двигателе ДБМ150-4-1,5-2 при

.

Рис. 17. Переходные процессы в двигателе ДБМ185-6-0,2-2 при

.

Из рис. 11-16 видно, что запаздывание в канале ВТ-ДМ-Ф влияет на статические и динамические процессы в ВМ.

Если сравнивать вентильную машину с машиной постоянного тока, то её особенности проявляются главным образом в установившемся режиме в виде ухудшения механических, регулировочных и энергетических характеристик. Что касается динамических характеристик, то результаты моделирования показывают, что вентильная машина практически аналогична машине постоянного тока.

Механические и электромагнитные характеристики вентильной машины

В установившемся режиме при такой установке ДПР, чтобы обеспечить

из уравнений (12) и (13) определяют установившиеся токи и момент:

Токи в осях

,

(14)

(15)

Ток, потребляемый машиной

(16)

Если не учитывать постоянную фильтра

, то из уравнений (13) – (15) получаются уравнения классической вентильной машины.

,
(17)

При

характеристики вентильной машины становятся аналогичными машине постоянного тока.