Смекни!
smekni.com

Разработка телекоммуникационной системы для поддержки научно-исследовательской деятельности ИО (стр. 1 из 8)

Министерство образования и науки Российской Федерации

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ ЭЛЕКТРОНИКИ И МАТЕМАТИКИ

Дипломная работа

На тему:

«Разработка телекоммуникационной системы для поддержки научно-исследовательской деятельности ИО РАН»

МОСКВА 2008

Аннотация

В данном дипломном проекте велась разработка подсистемы сбора гидрофизических параметров (ГФП), которая может применяться в составе автономного океанологического зондирующего комплекса для мониторинга, анализа и прогнозирования изменений экологической обстановки морской экосистемы в течение длительного периода времени в условиях антропогенного воздействия на Мировой океан.

В ходе выполнения дипломного проекта проведен анализ существующих технических решений подсистемы спора ГФП.

На основании анализа в строгом соответствии с требованиями, предъявляемыми техническим заданием на дипломное проектирование был выбран первичный преобразователь, микроконтроллер, и прочие периферийные компоненты, необходимые для проектирования устройства.

Используя полученные сведения, была разработана структурная и электрическая принципиальная схемы устройства, алгоритм работы подсистемы сбора ГФП и программное обеспечение для микроконтроллера, позволяющеее проводить гибкую настройку обсерватории в зависимости от применяемых датчиков, и режимов работы.

В результате выполнения дипломного проекта приобретен опыт в применении комплексных инженерных знаний для разработки сложных многомодульных микропроцессорных систем.

Фактически был создан прототип подсистемы сбора ГФП для автономного океанологического зондирующего комплекса.

Введение

Океаноло́гия (от океан и др.-греч. λόγος – суждение, слово.) или океаногра́фия (от океан и др.-греч. γραφειν – пишу, описываю) изучает крупномасштабное взаимодействие океана и атмосферы и его длиннопериодную изменчивость, химический обмен океана с материками, атмосферой и дном, биоту и её экологические взаимодействия, устанавливает местные или локальные процессы, происходящие за счет обмена энергией и веществом между различными районами океана. Океанология рассматривает Мировой океан одновременно как часть гидросферы и как целостный планетарный природный объект, который взаимодействует с атмосферой, литосферой, материковым стоком и представляет собой, по существу совокупность дисциплин, изучающих физические, химические и биологические процессы, протекающие в океане в целом, в его отдельных регионах (региональная океанология), в окраинных и внутренних морях.

В России понятие «океанография» обычно подразумевает тот же предмет, но без биологической составляющей. [1]

Океанологию можно подразделить на следующие пять частей:

1) Морская биология или биологическая океанография, изучает растения и животных (биоту) океанов и их экологические взаимодействия.

2) Химическая океанология, изучает химию океана.

3) Морская геология или геологическая океанография, изучает геологию океанического дна а также тектонику плит

4) Взаимодействие океана и атмосферы

5) Физическая океанология, изучает физические свойства морской воды (термодинамика, акустика, оптика), динамические процессы в океане (течения, волны, приливы, турбулентные движения.

Проблемы океанологии

– проблема физики океана – выяснение закономерностей взаимодействия океана и атмосферы; физика океана включает гидротермодинамику, акустику и оптику океана, исследования его радиоактивности и электромагнитного поля;

– проблема химии океана – выявление закономерностей обмена и трансформации химических веществ в океане и формирование его химического баланса;

– проблема биологии океана – выяснение закономерностей формирования и оценка биомассы и годовой продуктивности важнейших видов организмов и управления биологической продуктивностью океана;

– проблема геологии океана – выявление закономерностей геологических процессов на дне и под дном океана.

Главные практические цели океанологии:

– обеспечение безопасности и повышение эффективности надводного и подводного мореплавания;

– использование биологических, минеральных и энергетических ресурсов вод и дна океана;

– усовершенствование методов прогноза погоды.

Методы океанологических исследований

Поскольку океанология – комплексная наука, то существуют различные методы океанологических исследований, в основе которых лежат разные принципы получения, обработки и передачи информации.

Одним из важнейших новых направлений современной наблюдательной океанологии является использование искусственных спутников Земли (ИСЗ) для наблюдений океана.

Автономные океанологические станции (АОС) стали активно внедряться в практику океанологических исследований вместе с развитием электроники и автоматики, когда появилась возможность создания компактных и надежных устройств для автоматической записи информации и ее передачи на береговой пункт сбора данных в реальном масштабе времени. К преимуществам применения АОС прежде всего относится возможность непрерывного получения информации о состоянии выбранного участка водной толщи за длительный (достигающий нескольких лет) период, в том числе в реальном времени, что невозможно осуществить другими способами. Ниже будут рассмотрены такие основные типы АОС, как автономные буйковые станции, автономные донные станции и автономные подводные исследовательские обсерватории.

За последние два-три десятилетия в разных странах, занимающих ведущее положение в области морских технологий, было создано значительное количество автономных необитаемых подводных аппаратов (АНПА), использующихся для решения широкого круга научных и прикладных задач по исследованию и освоению океана. Современные многоцелевые АНПА представляют собой новый класс подводных робото-технических объектов с присущими им задачами и практическими применениями, особенностями технологии, составом систем и функциональными свойствами. К числу наиболее актуальных применений современных АНПА можно отнести обзорно-поисковые работы, включая поиск и обследование затонувших объектов, инспекцию подводных сооружений и коммуникаций (трубопроводов, водоводов, кабелей), геологоразведочные работы, включающие топографическую и фото- и видеосъемку морского дна, акустическое профилирование и картографирование рельефа, подледные работы, такие как прокладка кабеля на арктическом дне, обслуживание систем наблюдения и освещения подледной обстановки, океанографические исследования, мониторинг водной среды, работы военного назначения, включающие, в частности, противолодочную разведку, патрулирование, обеспечение безопасности объектов военной техники, обследование минных полей.

Сравнительно новой компонентой информационной системы при проведении экспериментальных исследований в океане являются обитаемые подводные аппараты, создание которых ознаменовало появление принципиально нового средства изучения океана. Подводные аппараты используются при проведении работ на дне и в придонном пространстве, таких как поиск и обследование затонувших объектов, контроль состояния подводных коммуникаций и инженерных сооружений, геологоразведочные работы (картографирование и профилирование дна, фото- и видеосъемки), манипуляционно-технические и аварийно-спасательные работы, подводные монтажно-прокладочные работы, исследования Мирового океана.

Активное развитие наблюдений со свободнодрейфующих буев началось в 80-х гг., когда было осознанно, что этот метод позволяет проводить измерения оперативно и в глобальном масштабе. К настоящему времени широкое распространение получили свободнодрейфующие поверхностные буи (дрифтеры) разных типов и буи-профилемеры. Свободнодрейфующие поверхностные буи измеряют температуру и прозрачность морской воды, а также атмосферное давление. Будучи снабженными специальным парусом, они позволяют измерять скорость приповерхностных течений, Специализированные метеорологические дрифтеры способны определять основные характеристики приводного слоя атмосферы. [2]

Особо эффективным средством для исследования крупномасштабной низкочастотной изменчивости океана являются буи-профилемеры, Эти буи вертикально перемещаются в толще вод посредством изменения их плавучести. Каждый буй способен совершить значительное число циклов всплытие-погружение, осуществляя долговременные наблюдения течений и регулярные измерения профилей температуры и солености морской воды.

Позиционирование свободнодрейфующего буя и передача данных осуществляются через спутник, что позволяет разворачивать глобальные сети таких средств любой конфигурации.

Океанографические наблюдения с судов в течение длительного времени являлись основным источником информации о процессах, протекающих в Мировом океане. Однако в настоящее время, когда появились принципиально новые средства и методы проведения экспериментальных исследований в океане, ситуация в корне изменилась. Теперь общая характеристика гидрологических условий в районе работ может быть получена на основе наблюдений другими компонентами наблюдательной системы, описанными выше, и появляется возможность проводить комплексные судовые исследования в широком диапазоне пространственно-временных масштабов при полностью контролируемых фоновых условиях.

Одним из эффективных методов организации регулярных наблюдений является использование коммерческих судов или паромов в качестве платформ для размещения океанографических приборов. При наличии автономных средств наблюдений и спутниковых каналов передачи информации накопление метеорологических данных и наблюдений в открытом океане оказывается возможным при минимальном вложении средств. Используя суда, работающие по расписанию, удается проводить гидрометеорологические наблюдения на регулярной основе. [2]