Смекни!
smekni.com

Смуговий активний фільтр (стр. 1 из 3)

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Пояснювальна записка

до курсового проекту з дисципліни “Електроніка та мікросхемотехніка”

СМУГОВИЙ АКТИВНИЙ ФІЛЬТР


ЗМІСТ

Анотація

Індивідуальне завдання

Вступ

1 Аналіз сучасного стану питань і обґрунтування мети дослідження

2 Аналітично розрахункова частина

Висновки

Література

Додаток №1

Додаток №2


АНОТАЦІЯ

Для забезпечення високих значень стабільності параметрів фільтра і лінійності, передатна характеристика всіх ОП мікросхеми включена з повторювачами напруги. На основі 140УД6 можна зібрати і смуговий активний фільтр, що буде фільтром основної селекції трансивера прямого перетворення .Однак у трансивері все рівно потрібний найпростіший ФНЧ 2-го порядку на вході. На DA1.1, DA1.2 зібраний ФНЧ четвертого порядку, а на DA1.3, DA1.4 - ФВЧ четвертого порядку. Частота зрізу ФНЧ складає 150 кГц, а у ФВЧ - 10 Гц і їхні значення можуть бути легко змінені в одну чи іншу сторону. Так, щоб понизити частоту зрізу в обох ФНЧ у п раз, необхідно в п раз збільшити значення С1, С2, С3, С4. Застосування фільтра в мікрофонному підсилювачі може істотно підвищити частоту випромінюваного спектра. Використання активного фільтра може дати ефект і в тих фільтрових трансиверах, де основна селекція здійснюється за допомогою ЭМФ.


Вихідні дані

Верхня межа вимірювання 150кГц.

Нижня межа вимірювання 10Гц

Лінія обмежень n=-40 дБ/дек

Коефіцієнт підсилення К0

3


ВСТУП

Для сучасного етапу науково-технічного прогресу властиво безупинне удосконалювання елементної бази мікроелектроніки. Саме великі науково-технічні досягнення здійснюються в значній мірі завдяки широкому використанню електронних засобів виміру, обробки, керування. Особливо зросла роль електроніки з розвитком технології мікросхемотехніки, що дозволяє істотно зменшити габаритні розміри, масу, автоматизувати процес виготовлення електронних пристроїв, значно підвищити надійність електронних систем керування. Мікросхемотехніка будучи основою сучасної обчислювальної і керуючої техніки, привела до розробки і широкого впровадження нового класу електронних пристроїв — мікропроцесорів і однокристальних мікро ЭВМ.

Широке застосування мікросхемотехніки привело до розвитку нового етапу комплексної автоматизації — гнучким автоматизованим виробництвам, керування якими засновано на широкому застосуванні мікропроцесорів і мікроЭВМ. Електроніка і мікросхемотехніка забезпечують автоматизоване керування технологічними процесами, науковими й експериментальними дослідженнями, окремими об'єктами.

Спеціальність «Електроніка» — одна з найважливіших і найбільш універсальних у сучасній системі утворення. У сферу її інтересів входять самі різноманітні об'єкти і пристрої керування — від елементарних регуляторів до складних систем керування виробничими процесами й експериментальними дослідженнями.

Системи електроніки і управління успішно функціонують у машинобудівній, гірничорудній, хімічній, легкій і харчовій промисловості, в атомній енергетиці, у різних літальних апаратах і в апаратах, що досліджують глибини океану.

Різноманітність областей застосування елементів електроніки і керування визначається спільністю законів керування і засобів реалізації цих законів.

Спільність законів керування ґрунтується на незалежності принципів керування від природи об'єкта керування, а спільність засобів реалізації цих законів випливає з незалежності інформації, що переробляється в системах керування, від способу її фізичного представлення, тобто від характеру носія інформації. Це дозволяє представити будь-як систему автоматики і керування як деяку систему, що переробляє відповідно до закладеного в неї алгоритмами інформацію про стан об'єкта (одержувану від датчиків, розташованих на об'єкті, чи від оператора) у керуюче чи вплив вихідну інформацію.

Фізичним носієм інформації про які-небудь події, стани об'єкта, команди керування є сигнали, наприклад акустичні, електричні, механічні, світлові.

У сучасних системах електроніки і управління використовують в основному електричні сигнали, для яких характерні висока швидкість їхньої обробки, простота формування і передачі на довгі відстані, широкий діапазон струмів і напруг (від часток мікроамперів і мікровольт до тисяч амперів і сотень кіловольт), простота перетворення електричної енергії в інші види (теплову, механічну, світлову).

У процесі формування, передачі й обробки електричні сигнали піддаються різним перетворенням: посиленню, фільтрації для усунення перекручувань, захисту від перешкод, формуванню за формою, амплітудою, тривалістю. Для цього використовують електронні пристрої, що складаються з електронних елементів і пасивних електричних ланцюгів (резисторів, конденсаторів, котушок індуктивності), призначених для зв'язку окремих електронних елементів, або виконуючих самостійні функції перетворення електричних сигналів. Вершиною сучасного розвитку електроніки є створення в одному корпусі (на одному кристалі) програмувальних електронних елементів — мікропроцесорних наборів і мікроЭВМ, застосування яких відкриває новий етап у розвитку всіх областей техніки, і особливо автоматики.

Незалежно від ступеня складності мікросхем і широти виконуваних ними функцій основу їхньої структури складають елементарні схеми, фізичні принципи й особливості роботи яких найбільше просто й ефективно виявляються при моделюванні мікросхем за допомогою окремих дискретних електронних і електричних елементів. Це сприяє більш глибокому розумінню принципів побудови електронних пристроїв будь-якого ступеня складності, дозволяє більш ефективно і повно використовувати їхні якості, спрощує процес настроювання і пошук несправностей.


1 АНАЛІЗ СУЧАСНОГО СТАНУ ПИТАНЬ І ОБГРУНТУВАННЯ МЕТИ ДОСЛІДЖЕНЬ

Активні RС-фільтри (АRС-фільтри) широко застосовують у радіотехніці, автоматиці, вимірювальній техніці й інших областях. Сучасні АRС-фільтри мають меншу масу і габарити, чим пасивні низькочастотні LС-фільтри, і кращі електричні характеристики. Важливим їхнім достоїнством є можливість сполучення функції-фільтрації і посилення сигналів у діапазоні частот від часток герца до одиниць мегагерц.

Можливість створення частотно-виборчих пристроїв на базі елементів R, С и активних-безіндуктивних лінійних ланцюгів з постійними в часі параметрами була обґрунтована наприкінці 50-х років. Такі пристрої широко почали застосовувати з початку 60-х років, коли в зв'язку з успіхами транзисторної техніки ARС-фільтри виявилися конкурентноздатними з пасивними LС-фільтрами. Починаючи з 70-х років основна увага була приділена створенню практичних схем (ланок другого порядку), еквівалентних по своїх характеристиках резонансним LС-контурам. Великий внесок у цей напрямок внесли вітчизняні дослідники, особливо колективи під керівництвом Е.І. Куфлевского й А. А. Ланнэ.

Традиційним способом побудови складних фільтрів високого порядку (з передатною функцією вище третього порядку) є просте каскадування ланок другого і першого порядку. Однак каскадні схеми не могли забезпечити підвищені вимоги до вибірковості, динамічного діапазону, нестабільності характеристик фільтра. Це змусило розроблювачів шукати нові нетрадиційні методи реалізації функцій високого порядку. У результаті з'явився новий напрямок у теорії АRС-фільтрів-синтез фільтрів високого порядку. Роботи в цьому напрямку ведуться двома шляхами. Перший — конструювання передатних функцій, що забезпечують більш високу стабільність характеристик. Набагато активніше розвивається другий шлях — створення нових методів реалізації передатних функцій високого порядку.

Відомі наступні основні методи реалізації:

метод перемінних станів (безпосереднє аналогове моделювання передатної функції T(р)); на базі конверторів негативного опору (КНО) і пасивних RС-ланцюги; рівнобіжний; каскадний; заснований на багатопетлевих структурах; імітуючих двухстороннє навантажені LС-ланцюги.

Застосування для побудови АRС-фильтров високого порядку вкрай утруднено через високу чутливість характеристик до зміни параметрів елементів, що вимагає використання елементів з малими допусками і високою стабільністю. В даний час метод застосовується тільки для високоякісної реалізації передатної функції другого порядку. Методи реалізації, засновані на застосуванні КІС ,відомі з початку 60-х років, також не одержали поширення при побудові фільтрів високого порядку. При реалізації передатної функції з комплексними полюсами: КНО RС-ланцюгами чутливість характеристик у більшості випадків неприпустимо велика. Крім того багато методів реалізації на основі КНО вимагають більшої кількості елементів. При рівнобіжній реалізації передатна функція представляється у виді суми співмножників другого порядку, кожний з який реалізується ланкою другого порядку. Схема фільтра складається з паралельно включених ланок, що мають загальний вхід, вихідний сигнал формується як сума вихідних напруг ланок, кожне зі своїм ваговим коефіцієнтом. Перевагою такої реалізації є однотипність схем ланок. Однак на практиці цей метод застосовується вкрай рідко в основному через складність настроювання і малого динамічного діапазону, що неможливо збільшити шляхом оптимізації схеми.

При каскадній реалізації передатна функція звичайно представляється у виді добутку співмножників другого порядку й одного співмножника першого порядку (при непарному ступені Т(р)). Кожний з цих співмножників потім реалізується ланкою другого чи першого порядку. Основною перевагою каскадних фільтрів є уніфікація конструкції, простота розрахунку і настроювання, що виникає через слабку взаємодією між ланками. Донедавна каскадування ланок було основним методом реалізації АRС-фільтрів високого порядку, при цьому виявлялось, що якісні показники таких фільтрів визначаються тільки характеристиками ланок. Результати робіт, виконаних за останні 10 років , показали, що динамічний діапазон, стабільність і інші показники каскадної реалізації істотно залежать від того, як компонуються полюсно-нульові пари в передатних функціях ланок, у якій послідовності включені ланки і які коефіцієнти підсилення обрані. В даний час у зв'язку із широким практичним використанням АRС-фільтрів до них пред'являються усе більш твердіші вимоги, і каскадний метод реалізації, хоча і залишається поки найбільш розповсюдженим, уже далеко не завжди задовольняє розроблювачів, особливо при проектуванні вузькосмугових фільтрів більш восьмого порядку. Основна причина цього полягає у великій чутливості частотних характеристик фільтра до зміни параметрів елементів. Крім того, каскадні схеми незручні для побудови перебудовуючих фільтрів.