Смекни!
smekni.com

Сверхпроводящие кабели (стр. 3 из 3)

На основе полученных результатов можно считать установ­ленной возможность достаточно длительного поддержания вы­сокого вакуума в криогенной оболочке, в которой использована многослойная экранно-вакуумная изоляция.

ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕГО РАЗВИТИЯ И ИСПОЛЬЗОВАНИЯ

С 16 по 20 сентября 2007 года в Брюсселе состоялась всеевропейская конференция EUCAS-2007 по проблемам изучения и использования явления сверхпроводимости. Состоявшуюся конференцию без преувеличения можно назвать съездом победителей. EUCAS-2007 зафиксировал очередной триумф человеческой мысли, который возможно станет ключом к решению глобальных энергетических и экологических проблем на планете в XXI веке.

Человечество стоит на пороге очередного технологического прорыва, способного перевернуть привычный всем нам мир. Масштабы новой индустриальной революции могут сравнится с тем, как изменился образ жизни людей после обнаружения замечательных свойств полупроводников.

Ученые всей земли долго бились над проблемой практического применения сверхпроводимости, и, похоже, что этот вопрос успешно разрешился. Человечество «оседлало» сверхпроводимость. Это явление все чаще используется в современной электронике, энергетике, промышленности и медицине.

Согласно данным известного в Европе консорциума Conectus, специально созданного в целях изучения и пропаганды возможностей коммерческого использования явления сверхпроводимости, международный рынок оборудования, использующего это явление к 2010 году составит 5 млрд. $ и вырастит до 38 млрд. $ к 2020 году.
На сегодняшний день основные сферы применения сверхпроводимости - это медицинские установки магнитно-резонансной терапии (именно в этих аппаратах впервые удалось эффективно использовать явление) и электроника. К 2020 году ситуация изменится. Сверхпроводимость будет широко использоваться в энергетике, промышленности, на транспорте и гораздо шире в медицине и электронике.
Выделяют три больших области использования сверхпроводников:

· различные материалы: пленочные проводники, сверхпроводящие магниты и пр.;

· микротехника: микроволновые устройства, сверхчувствительные системы обнаружения магнитных полей (SQUID), цифровая электроника, искусственные биологические системы;

· макротехника: силовые кабели, электрические системы и сети, генераторы и двигатели.

4.1 Передача энергии

Потенциально наиболее выгодное промышленное применение сверхпроводимости связано с генерированием, передачей и использованием электроэнергии. Например, по сверхпроводящему кабелю диаметром несколько дюймов можно передавать столько же электроэнергии, как и по огромной сети ЛЭП, причем с очень малыми потерями или вообще без них. Стоимость изготовления изоляции и охлаждения криопроводников должна компенсироваться эффективностью передачи энергии. С появлением керамических сверхпроводников, охлаждаемых жидким азотом, передача электроэнергии с применением сверхпроводников становится экономически очень привлекательной.

Проект «Гидра»

В 2007 году в США началась реализация "Проекта «Гидра» (Project Hydra), за которым внимательно наблюдает вся заинтересованная общественность в мире. Проект реализует корпорация American Superconductor (AMSC).
Полная стоимость проекта оценивается в 39,3 млн. долл. Министерство национальной безопасности США (Department of Homeland Security (DHS)) планирует инвестировать в данный проект 25 млн. долл., ожидая, что в дальнейшем это позволит использовать технологию безопасных энергосистем «Secure Super Grid™» на основе ВТСП проводов, кабелей и токоограничителей в сетях США. Министерство подписало с AMSC предварительное соглашение на 1.7 млн. долл. (из них 1.1 млн. долл. от DHS), и работа над проектом началась. Подписано отдельное соглашение между AMSC и Con Edison – субподрядчиком этого проекта.

В рамках контракта будет разработана и построена беспрецедентная по защищенности и степени резервирования система электроснабжения центра г. Нью-Йорка, исключающая нарушение электроснабжения при любых авариях (из-за погоды, технологических сбоев, атак террористов). Название «Проект Гидра» («Project Hydra») программа получила по ассоциации c многоголовым мифическим чудовищем. Подобно тому как у него отрастали головы после их отсечения, так электроснабжение должно иметь множество запасных каналов на аварийные случаи.
Размещение ВТСП кабеля в сети Нью-Йорка планируется осуществить за три года двумя этапами. Первый, уже начатый этап, состоит в подготовке прототипов систем. К 2008 г. намечено завершение испытаний первой системы Secure Super Grid.
Второй этап сфокусирован на размещении этой системы на участке энергосети Con Edison в Нью-Йорке. В рамках проекта к 2010 г. фирмой Southwire Company (США) (по контракту с AMSC) будет изготовлен триаксиальный «Triax™» кабель из ВТСП провода 2-го поколения «344» на 13 кВ (рис. 2).

AMSC предлагает новую СП технологию «Secure Super Grids™» для энергосистем большой мощности с защитой от перенапряжения, обеспечивающую безопасное и эффективное снабжение электроэнергией предприятий города.

Почему ВТСП кабели могут помочь при решении проблем с постоянно увеличивающейся потребностью мегаполисов в электроэнергии? Во-первых, кабели из ВТСП могут передавать в 10 раз большую мощность по сравнению с традиционными медными кабелями при аналогичном сечении кабельного канала (рис. 2). Во-вторых, замена медных кабелей, используя уже имеющиеся в грунте коммуникации, позволит обеспечить недостающие мощности без дополнительного проведения дорогостоящих земляных работ. Кроме того, при необходимости новых распределительных или подводящих электроэнергию сетей объем прокладочных работ также существенно меньше, чем в случае традиционных медных кабелей.

К настоящему времени много компаний, в том числе и AMSC, занимаются разработкой и испытанием СП токоограничителей. «Secure Super Grids™» технология может соединить свойства ВТСП кабеля высокой мощности и ВТСП токоограничителей в одной системе. Токоограничение может быть достигнуто в кабеле из ВТСП 2-го поколения за счет сравнительного высокого удельного сопротивления исходных сверхпроводящих лент, появляющегося при перегрузке током. По расчетам AMSC, рынок новой технологии и токоограничителей в виде самостоятельных устройств превысит миллиард долларов в год.

Исполнительный директор компании Грегори Юрик (Greg Yurek) предполагает, что новое направление послужит катализатором ускоренного внедрения ВТСП технологий в энергетические системы. Он считает «Проект Гидра» удачным соединением трёх идей: концепции Министерства национальной безопасности – вложение средств в инновационные энергетические технологии для повышения уровня безопасности энергосетей; концепции Con Edison – внедрение СП технологии в свой энергетический план «System of the Future» для Нью-Йорка; концепции AMSC – коммерциализация СП технологии для нужд электроэнергетики.
“Проект Гидра” имеет мощный фундамент 20-летних разработок ВТСП технологий в США, финансируемых Министерством энергетики и частными компаниями, уже функционируют ВТСП кабели в трех энергетических системах США.

Применение сверхпроводников на железных дорогах

Инженеры давно уже задумывались о том, как можно было бы использовать огромные магнитные поля, создаваемые с помощью сверхпроводников, для магнитной подвески поезда (магнитной левитации). За счет сил взаимного отталкивания между движущимся магнитом и током, индуцируемым в направляющем проводнике, поезд двигался бы плавно, без шума и трения и был бы способен развивать очень большую скорость.

Лидером в области применения сверхпроводимости на железной дороге является Япония. В Японии разработки данного направления ведутся уже около 20 лет, за это время выпущено около 10 модификаций поездов.

ЗАКЛЮЧЕНИЕ

Потенциальная выгода от широкого использования явления сверхпроводимости очевидна: радикальное снижение потерь электроэнергии при ее выработке и передаче, уменьшение в разы размеров генерирующего оборудования и двигателей, создание новых электронных приборов, разработка сверхмощных электромагнитов для научных исследований и промышленности, разработка новых направлений в медицине, использование эффекта левитации на железной дороге.

Распространению сверхпроводимости, не в последнюю очередь, способствуют жесткие ограничения на выбросы парниковых газов, установленные Киотским протоколом. Например, Европа должна уменьшить выбросы газов на 8% к 2012 году по сравнению с 1990 годом. Финские ученые подсчитали, что эту задачу можно было бы выполнить при широком применении сверхпроводимости на электростанциях и в системах передачи и распределения энергии, что дало бы возможность снизить количество сжигаемого топлива, не уменьшив выработку электроэнергии. Одним словом, сверхпроводники должны найти свое широкое применение уже в ближайшем будущем и стать неотъемлемой частью мировой промышленности.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Алфеев В. Н. Радиотехника низких температур. — М.: Сов. радио, 1966.-368 с;

2. Гроднев И. И., Левинов К. Г., Гальперович Д. Я. Сверхпроводящие ка­бельные линии связи. — Электросвязь, 1974;

3. Наман Н. Миниатюрные сверхпроводящие коаксиальные линии передачи. ТИИЭР, 1973;

4. Интернет: http://www.energyland.info.