Смекни!
smekni.com

Спектральный анализ и синтез сигнала (стр. 2 из 3)

б) спектральное распределение мощности сигнала.

На основе первой характеристики можно найти относительное время пребывания величины сигнала в определённом интервале уровней, отношение максимальных значений к среднеквадратическому и ряд других важных параметров сигнала. Вторая характеристика даёт лишь распределение по частотам средней мощности сигнала. Более подробной информации относительно отдельных составляющих спектра – об их амплитудах и фазах – спектральная характеристика случайного процесса не даёт.

Наряду с полезными случайными сигналами в теории и практике приходится иметь дело со случайными помехами – шумами. Как уже упоминалось выше, уровень шумов является основным фактором, ограничивающим скорость передачи информации при заданном сигнале.

2.1 Спектральные характеристики периодических сигналов

Для упрощения методов решения задач анализа цепей, сигналы представляют в виде суммы определенных функций.

Этот процесс обосновывается понятием обобщенного ряда Фурье. В математике доказано, что любая функция, удовлетворяющая условиям Дирихле, может быть представлена в виде ряда:

.

Для определения

умножим левую и правую части ряда на
и возьмем интеграл от левой и правой части:

, для интервала [a;b] в котором выполняются условия ортогональности.

Видно, что

.Получили выражение для обобщенного ряда Фурье:

.

Выделим конкретный вид функции

, для разложения в ряд сигнала
. В качестве такой функции выберем ортогональную систему функций:

Для определения ряда вычислим значение

:

.

, так как
.

Таким образом, получим:

, где

.

Графически данный ряд представляется в виде двух графиков амплитудных гармонических составляющих.

Полученное выражение можно представить в виде:

где
;
.

Получили вторую форму записи тригонометрического ряда Фурье. Графически данный ряд представляется в виде двух графиков - амплитудного и фазового спектров.

Найдем комплексную форму ряда Фурье, для этого воспользуемся формулами Эйлера:

или

, где

Графически спектр в этой форме представлен на оси частот в диапазоне

.

Очевидно, что спектр периодического сигнала, выраженный в комплексной или амплитудной форме – дискретный. Это значит, что в спектре имеются составляющие с частотами

2.2 Спектральные характеристики непериодического сигнала

Так как в качестве непериодического сигнала в радиотехнике рассматривают одиночный сигнал, то для нахождения его спектра представим сигнал как периодический с периодом

. Воспользуемся преобразование ряда Фурье для данного периода. Получим для
:

.

Анализ полученного выражения показывает, что при

амплитуды составляющих становятся бесконечно малыми и на оси частот они расположены непрерывно. Тогда, что б выйти из этого положения воспользуемся понятием спектральной плотности:

.

Подставим полученное выражение в комплексный ряд Фурье, получим:

.

Окончательно получим:

.

Здесь

- спектральная плотность, а само выражение – прямое преобразование Фурье. Для определения сигнала по его спектру используют обратное преобразование Фурье:

.

Свойства преобразования Фурье

Из формул прямого и обратного преобразований Фурье, очевидно, что если изменится сигнал, то изменится и его спектр. Следующие свойства устанавливают зависимость спектра измененного сигнала, от спектра сигнала до изменений.

1) Свойство линейности преобразования Фурье:

.

, т.е.

.

Получили, что спектр суммы сигналов равен сумме их спектров.

2) Спектр сигнала сдвинутого во времени:

.

.

.

Получили, что при сдвиге сигнала амплитудный спектр не изменяется, а изменяется только фазовый спектр на величину

3) Изменение масштаба времени:

.

т.е при расширении(сужении) сигнала в несколько раз спектр этого сигнала сужается(расширяется).

4) Спектр смещения:

.

.

5) Спектр производной от сигнала:

.

Возьмем производную от левой и правой части обратного преобразования Фурье:

.

.

Видим, что спектр производной от сигнала равен спектру исходного сигнала умноженного на

, то есть изменяется амплитудный спектр и меняется фазовый на

6) Спектр интеграла сигнала:

.

Возьмем интеграл от левой и правой части обратного преобразования Фурье:

.

.

Видим, что спектр производной от сигнала равен спектру исходного сигнала деленного на

.

7) Спектр произведения двух сигналов:

.

.

.

Таким образом, спектр произведения двух сигналов равен свертке их спектров умноженной на коэффициент

.