Смекни!
smekni.com

Удобрение почвы (стр. 7 из 8)

На нейтральных буферных почвах минеральные удобрения даже при длительном их применении положительно действуют на почвенную микрофлору и растения. В табл. 5 приводятся результаты опыта, в котором черноземные почвы Воронежской области удобрялись разными минеральными туками. Азот вносили из расчета 20 кг/га, Р205—60 кг/га, К2О — 30 кг/га. Развитие почвенного микронаселения усилилось. Однако высокие дозы удобрений, используемые длительное время, тоже могут снизить рН и подавить рост микрофлоры и раcтений. Поэтому при интенсивной химизации следует учитывать физиологическую кислотность удобрений. Вокруг кусочков минеральных или органических удобрений в почве создаются радиальные микрозоны, содержащие различную концентрацию питательных веществ и имеющие различное значение рН.

Таблица 5

Влияние минеральных удобрений на численность микрофлоры черноземной почвы (в тыс/г)

Удобрение Бактерии Актиномицеты Грибы Микроорганизмы, разрушающие клетчатку
КонтрольP2O5+K2OP2O5+K2O+N 420056008300 170024503350 162721 30185270

В каждой из подобных зон развивается своеобразная группировка микроорганизмов, характер которого определяется составом удобрений, их растворимостью и т. д. Таким образом, было бы ошибочно думать, что удобренные почвы во всех точках имеют однотипную микрофлору. Микрозональность, впрочем, свойственна и неудобренной почве, о чем упоминалось ранее.

Усиление размножения микроорганизмов в удобренных почвах сказывается на активизации процессов, протекающих в почве. Так, заметно усиливается выделение почвой С02 («дыхание» почвы), что является следствием более энергичного разрушения органических соединений и перегноя. Понятно, почему в удобренных почвах растения наряду с внесенными элементами используют большие количества питательных веществ из почвенных запасов. Особенно наглядно это проявляется в отношении азотных соединений почвы. Опыты с минеральными азотными удобрениями, меченными N15, показали, что размер мобилизации азота почвы под их влиянием зависит от типа почвы, а также дозировок и форм использованных соединений.

Усилившаяся деятельность микроорганизмов в удобренных почвах одновременно приводит к биологическому закреплению части внесенных минеральных элементов. Некоторая часть минеральных азотсодержащих веществ, например соединения аммония, может закрепляться в почве и в силу физико-химических и химических процессов. В условиях вегетационного опыта в почве связывается до 10—30% дисперсно внесенных азотных удобрений, а в полевых условиях — до 30—40% (А.М. Смирнов). После отмирания микроорганизмов азот их плазмы частично минерализуется, но частично переходит в форму перегнойных соединений. До 10% закрепленного в почве азота может быть использовано растениями в следующем году. Примерно в таком же темпе освобождается остальной азот.

Особенности микробиологической активности в разных почвах влияют на превращение азотных удобрений. На них существенно влияет техника внесения минеральных туков. Гранулирование, например, уменьшает контакт удобрений с почвой, а следовательно, и микроорганизмами. Это существенно повышает коэффициент использования удобрений. Все сказанное в значительной мере относится и к фосфорным удобрениям. Поэтому делается понятным значение учета микробиологической деятельности почвы при разработке вопросов рационального использования удобрений. Биологическое закрепление калия в почве происходит в относительно небольших количествах.

Если азотные удобрения наряду с другими минеральными соединениями активизируют деятельность сапрофитной микрофлоры, то фосфорные, а также калийные соединения усиливают активность свободноживущих и симбиотических азотофиксаторов.

Глава 2 Методика проведения исследования

Отбор проб

Научно-исследовательская работа проведена летом - осенью 2008г. на экспериментальном стационарном участке кафедры сельскохозяйственной радиологии и экологии при опытном поле Калужского филиала Российского государственного аграрного университета- МСХА им. К.А. Тимирязева в пригородной зоне города Калуги. Микробиологический анализ почвы проводился в испытательной лаборатории по качеству пищевых продуктов, продовольственного сырья и экологии. г. Калуга, кирпичная ул., МПС-15.

Район местонахождения учебно-опытного поля характеризуется умеренно-континентальным климатом, с теплым летом, умеренно холодной зимой, устойчивым снежным покровом и хорошо выраженными переходными сезонами. Полное оттаивание почвы наблюдается 23-24 апреля. По влагообеспеченности район расположения учебно-опытного поля нужно отнести к зоне достаточного увлажнения. Две трети годового количества осадков выпадает в виде дождя, одна треть в виде снега.

По природно-географическому районированию опытное поле относится к Угрино-Суходревскому району Смоленско-Московской провинции.

Почвенный покров учебно-опытного поля представлен дерново-подзолистыми почвами нормального увлажнения. Почвенная разновидность- дерново-среднеподзолистые супесчаные и песчаные почвы. Для этих почв характерно хорошо развитого гумусового горизонта.

Отбор проб почвы производили на дерново-подзолистых супесчаных почвах опытного поля КФ РГАУ – МСХА имени К. под посадками топинамбура. Брали пробу почвы на которую не вносились удобрения (контроль) и пробу почвы на которую вносились минеральные удобрения (NPK). Почву отбирали методом диагонали почвенным буром со стаканчиком 20 см. Объединенную пробу составляли путем смешивания точечных проб, отобранных на одной пробной площадке. В итоге проба почвы составляла 500 гр. Почву просушили и просеяли через сито диаметром 3 мм.

Приготовление разведений.

Образец почвы тщательно перемешали и из него отобрали навески 10 гр. Навеску поместили в стерильную колбу. Добавили 100 мл стерильной воды. Взболтали, дали 10 мин отстояться суспензии. В стерильные пробирки разлили по 9 мл стерильной воды. Стерильной пипеткой из исходной суспензии взяли 1 мл смеси и добавили в первую пробирку с водой. Это первое разведение, в нем концентрация почвы 1:10. Из первого разведения брали 1 мл раствора и добавляли его во вторую пробирку с водой. Это второе разведение с концентрацией почвы 1:100. Таким образом продолжали делать разведения до концентрации 1:100000(105).

Определение общей численности почвенных микроорганизмов.

Для определения общей численности почвенных микроорганизмов осуществили посев микроорганизмов на питательную среду, в качестве которой используется мясо-пептонный агар (МПА).

МПА представляет собой универсальную, плотную среду, которая плавится только при температуре около 100 ˚С и позволяет работать практически в любых температурных условиях. Брали 8,75 гр питательного агара в сухом виде, приготовленный промышленным способом. Добавляли его в колбу с 250 мл дистиллированной воды, полученную смесь доводили до кипения при постоянном помешивании. Кипятили до полного расплавления агара. Фильтровали среду через марлю. Затем, среду автоклавировали при давлении 1 атм в течение 20 минут. Перед розливом в чашки Петри среду охлаждали до 50˚ С.

Поверхностный метод посева.

В стерильную чашку Петри наливали агар слоем высотой 5 мм. При этом горло колбы во время разлива провели через пламя спиртовки, ватную пробку после разлива обожгли. Во время разлива пробку держали между мизинцем и безымянным пальцем правой руки. Стерильной пипеткой берем 1мл раствора из пятого разведения (105). Капали в чашку Петри с агаром и стерильным шпателем растирали по всей поверхности чашки.

Глубинный метод посева.

Стерильной пипеткой брали 1мл раствора из пятого разведения (105). Капали в чашку Петри и заливали агар. Чашку с агаром слегка помешали.

Подсчет колоний осуществили на пятый день после посева. Затем провели морфологическое описание колоний.

Морфологическое описание колоний.

Колонией называют изолированное скопление клеток одного вида, выросшее в большинстве случаев из одной клетки. В зависимости от того, где развивались клетки, различают поверхностные, глубинные и донные колонии. В нашем случае образовались поверхностные колонии. Описание производили учитывая следующие признаки:

форма – круглая, амебовидная, неправильная, ризоидная, круглая с фасеточным краем, круглая с валиком по краю, с ризоидным краем, нитевидная, складчатая, концентрическая, сложная.

размер – измеряют диаметр колонии в миллиметрах.

поверхность – гладкая, шероховатая, бороздчатая, складчатая, морщинистая, с концентрическими кругами или радиально исчерченная.

профиль – выпуклый, плоский, кратерообразный, конусовидный, бугристый.

блеск и прозрачность – блестящая, матовая, тусклая, мучнистая, прозрачная.

цвет – бесцветная или пигментированная – белая, желтая, золотистая, оранжевая, сиреневая, красная, черная.

край – ровный, волнистый, зубчатый, гладкий, лопастной, неправильный, реснитчатый.

структура – однородная, мелко- или крупнозернистая, струйчатая, волокнистая.

Приготовление фиксированных микропрепаратов.

На обезжиренное предметное стекло наносили каплю воды бактериологической петлей, простерилизованной на пламени горелки. Вновь прогревали петлю на пламени горелки и брали пробу колонии из чашки Петри. Растирали пробу в капле воды по кругу. Мазок высушивали на воздухе, затем фиксировали. Мазок фиксировали термически, проводя стекло 2 – 3 раза через пламя горелки мазком вверх. Фиксация мазка приводит к гибели микроорганизмов, плотному прилипанию их к поверхности стекла и более легкой восприимчивости микробов к красителю. Фиксированный мазок окрашивали, заливая его поверхность раствором красителя на 2 минуты. Затем краситель с мазка смывали водой, нижнюю сторону препарата вытирали полоской фильтровальной бумаги, верхнюю осторожно обсушивали с боков, не дотрагиваясь до мазка. Препарат окончательно досушивали на воздухе. Таким образом делали препарат с каждой колонии. Готовый мазок микроскопировали. Описывали морфологию бактерий и по данным определили род бактерии.