Элементы методики полевого опыта

Планирование однофакторного полевого опыта для условий конкретного сельскохозяйственного предприятия. Схема дисперсионного анализа для получения в опыте урожайности и другой цифровой информации. Оценка вариантов по урожайности, определение лучшего из них.

Содержание

Задача 1

Задача 2

Задача 3

Список литературы

Задача 1

Спланировать однофакторный полевой опыт для условий конкретного колхоза, совхоза или другого сельскохозяйственного предприятия.

Сформулировать тему исследования, рабочую гипотезу; конкретные задачи полевого опыта и объект исследования.

Разработать схему и элементы методики полевого опыта

Подобрать опытный участок, учесть его особенности (склон, влияние на него опушки, лесополосы, оврага и др.). Продумать размещение в связи с этим делянок будущего полевого опыта. При планировании полевого опыта в теплице учесть разный микроклимат. Свои соображения изложить в ответе.

Начертить схематический план полевого опыта. Показать все размеры, размещение вариантов на делянках, повторения, если надо. Предусмотреть применение имеющейся в хозяйстве сельскохозяйственной техники.

Определить схему дисперсионного анализа для получения в опыте урожайности и другой цифровой информации.

Разработать подробную методику двух сопутствующих наблюдений, требующих взятия выборок. Указать методику взятия образцов почвы, растений и др. объектов (сроки делянки, место на делянке).

Решение:

Тема: Исследование влияния нормы высева на урожайность пшеницы в условиях в условиях Приобской лесостепи Алтайского края.

Рабочая гипотеза: научное предвидение. Предполагаем, что оптимальная норма высева всхожих семян - 5 млн. на 1 га.

Задача полевого опыта - установить влияние на урожайность зерна следующих норм высева семян: 4; 4,5; 5; 5.5; 6 млн. на га.

Объект исследования - яровая пшеница в условиях Приобской лесостепи Алтайского края.

Почва опытного участка должна быть однообразной. Рельеф - небольшой однообразный уклон.

Схема опыта (табл.1):

Таблица 1

Схема полевого опыта

Вариант Норма высева, млн. на га
1 4
2 4,5
3 5
4 5,5
5 6

Повторность опыта - четырехкратная, опыты закладываем на делянках площадью 50 м2 и недостаточно выровненных земельных участках.

Площадь делянки выбрана с учетом того, что на таких делянках у зерновых достигается достаточно хорошая точность опыта. Кроме того, на таких сравнительно небольших делянках легче достичь большей точности, они удобнее и требуют меньше затрат и труда, чем крупные делянки.

Форма делянки - прямоугольная, 10х5м. Ширину боковой защитной полосы устанавливает в размере 1 м. Направление делянки - длинной стороной - в направлении, где сильнее всего изменяется плодородие почвы.

Число опытных участков - 4.

Размещение делянок - систематическое, в один ярус.

Схематический план полевого опыта представлен на рис.

Общая схема дисперсионного анализа показана в табл.

Рисунок - Схематический план полевого опыта


Таблица 2

Методика дисперсионного анализа

Сумма квадратов и степени свободы Формула
Общая Cy / N - 1
Повторений Cp / n - 1
Вариантов Cv / l - 1
Остатки (ошибки) Cz / (l - 1) (n-1)

Задача 2

Определить 95% -ный и 99% -ный доверительные интервалы для генеральной средней. Проверить нулевую гипотезу об отсутствии существенных различий между выборочными средними. Оценить существенность разности выборочных средних по t-критерию и критерию F.

Цифровую информацию заимствовать из табл.2, из которой использовать урожайность первых двух вариантов.

Урожайность по варианту 17: 245,290,217,280 (табл.3)

Урожайность по варианту 15: 240,282,210,173 (табл.4)

Таблица 3

Х1 Х1 - Хср 1 - Х1 ср) 2 Х1 2
245 -13 169 30025
290 32 1024 84100
217 -41 1681 47089
180 -53 2809 32400
∑ 932 0 5683
Х1 ср 233

Х1 ср = 932/4 = 233

S2 = ∑ (Х - Хср) 2 /n-1 = 5683/3 = 1894,33

S = √ S2 = 43.52

V = S/ Хср * 100 = 43.52/233*100 = 18.68%

S Хср 1 = √ S2 /n = √1894.33/4 = 21.76

S Хср 1% = S Хср 1 / Хср1 * 100% = 21.76/233*100 = 9.34%

Х1 ср ±t05 SХср1 = 233±3,18*21.76 = 233±69.19 (163.81-302.19 )

Х1 ср ±t01 SХср1 =233 ±5,84*21.76 = 233±127.08 (105.92 - 360.08)

Теоретические значения t берем из табл. для 5% -ного и 1% -ного уровня значимости при степенях свободы n=4-1 = 3

t05 = 3,18

t01= 5,84

Итак, средняя изучаемой совокупности с 95% -ным уровнем вероятности находится в интервале 163.81-302.19 и с 99% -ным уровнем - в интервале 105.92 - 360.08. вероятность ошибочного заключения в первом случае составляет 5%, а во втором - 1%. Абсолютная ошибка средней S равна 21.76 и относительная ошибка равна 9.34%.

Коэффициент вариации в данном случае V=18.68% характеризует в данном примере ошибку параллельных анализов.

Таблица 4

Х2 Х2 - Х2 ср 2 - Х2 ср) 2
240 -13,75 189,0625
282 55,75 3108,0625
210 -16,25 264,0625
173 -53,25 2835,5625
∑ 905 6396,75
Х1 ср 226,25

Х2 ср = 905/4 = 226,25

S2 = ∑ (Х - Хср) 2 /n-1 = 6396,75/3 = 2132,25

S = √ S2 = 46,17

V = S/ Хср2 * 100 = 46,17/226,25*100 = 20,41%

S Хср2 = √ S2 /n = √2132,25/4 = 23,09

S Хср % = S Хср / Хср2 * 100% = 23,09/226,25*100 = 10, 20%

Х2 ср ±t05 SХср2 = 258±3,18*23,09 = 226,25±73,43 (152,82 - 299,67)

Х2 ср ±t01 SХср2 =258 ±5,84*23,09 = 226,25±97,70 (128,55 - 323,95)

Итак, средняя изучаемой совокупности с 95% -ным уровнем вероятности находится в интервале 152,82 - 299,67и с 99% -ным уровнем - в интервале 128,55 - 323,95. вероятность ошибочного заключения в первом случае составляет 5%, а во втором - 1%. Абсолютная ошибка средней SХср равна 23,09 и относительная ошибка равна 10, 20%. Коэффициент вариации в данном случае V=20,41% характеризует в данном примере ошибку параллельных анализов.

Далее необходимо определить, существенно ли различаются эти выборочные средние при 0,95-95% уровне вероятности или 0,05-5% уровне значимости, т.е. проверить нулевую гипотезу Н0 : µ1 - µ2 = d = 0.

Х1 ср ±t01 SХср1 =233 ±5,84*21.76 = 233±127.08 (105.92 - 360.08)

Х2 ср ±t01 SХср =226,25 ±5,84*23,09 = 226,25±97,70 (128,55 - 323,95)

Доверительные интервалы для генеральных средних перекрывают друг друга, и, следовательно, разность между выборочными средними d = Х1 ср - Х2 ср = 233-226,25 = 6.75 нельзя переносить на генеральные средние µ1 и µ2 , так как генеральная разность между ними D = µ1 - µ2 может быть равна и нулю и даже отрицательной величине, когда µ21 . Поэтому гипотеза Н0 : d = 0 не отвергается.

Нулевую гипотезу об отсутствии существенных различий между выборочными средними можно проверить и другим способом интервальной оценки генеральных параметров совокупности.

Sd = √ (S Хср 1 2 + S Хср 2 2 )

По формуле можно определить ошибку разности средних, а затем рассчитать доверительные интервалы для генеральной разности средних D. Если доверительные интервалы перекрывают нулевое значение и включают область отрицательных величин, то Н0 : d = 0 не отвергается, а если лежат в области положительных величин, то Н0 отвергается и разность признается существенной.

Имеем:

d = Х1 ср - Х2 ср = 233-226,25 = 6.75

Sd = √ (S Хср 1 2 + S Хср 2 2 ) = √ (21.762 + 23,092 ) = 31.73

При n1 + n2 - 2 = 4+4-2 = 6 степенях свободы t05 = 2.45 и t01 = 3,71

Найдем доверительные интервалы для генеральной разности:

95% - d± t05 sd = 6.75±2.45*31.73 = 6.75±77.74 (-70.99 - 84.49)

99% - d± t05 sd = 6.75±3,71*31.73 = 6.75±117.72 (-110.97 - 124.47)

Нулевая гипотеза Н0 : d = 0 не отвергается, так как доверительные интервалы включают нуль и область отрицательных величин, т.е. разность меньше предельной случайной ошибки разности (d<tsd ).

Далее оценим существенность разности выборочных средних по t‑критерию. Фактическое значение критерия существенности находим по соотношению:

t = (х1ср - х2ср ) / √ (SХср1 2 + SХср2 2 ) = (233-226,25) /31.73 = 0.21

Сопоставляя фактическое значение t с теоретическим, приходим к выводу, что tфакт < t05 и 2.45 и tфакт < t01 .

Следовательно, разность несущественна.

Оценим существенность разности по критерию F.

F = s1 2/ s2 2

s1 2 = 21.762 = 473.49

s2 2 =23,092 = 533.15

F05 = 6.39

F01 = 15.98

F = s1 2/ s2 2 = 473.49/533,15 = 0, 88

Получаем:

Fф < F05 и Fф < F01

Следовательно, нулевая гипотеза не отвергается, между всеми выборочными средними нет существенных различий.

Задача 3

Обработать методом дисперсионного анализа урожайность однофакторного полевого опыта с однолетней культурой, проведенного методом рендомизированных повторений.

При выполнении данного задания воспользоваться методикой (1, с.232-233). Итоговые таблицы оформить по типу табл.62 (1, с.243).

Варианты оценить с учетом дисперсионного анализа. Установить лучший вариант по урожайности.

Предусмотрено подвергнуть дисперсионному анализу урожайность двух полевых опытов, из них один с картофелем (табл.5), второй - с ячменем (табл.6).

Решение:

Таблица 5. Урожайность картофеля, 10-1 т с 1 га

Вариант Повторение, Х Сумма V Средняя хср
1 2 3 4
1 245 290 217 180 930 233
2 240 282 210 173 905 226,25
3 234 278 207 172 891 222.75
∑Р 719 850 634 525 ∑Х = 2728 Хср 0 = 227.33

Для вычисления сумм квадратов исходные даты преобразовываем по соотношению Х1 = Х-А, приняв за исходное А число 250, близкое к Хср.

Преобразованные даты записываем в табл.

Правильность расчетов проверяем по равенству ∑Р = ∑V = ∑Хср 0

Таблица 6

Таблица преобразованных дат

Вариант Х1 = Х-А Сумма V
1 2 3 4
1 -5 40 -33 30 32
2 -10 32 -40 -77 -95
3 -16 28 -43 -78 -109
∑Р -31 100 -116 -125 ∑Х = - 172

Вычисления сумм квадратов отклонений проводим в такой последовательности:

Общее число наблюдений: N= l*n = 3*4 = 12

Корректирующий фактор С = (∑Х1 2 ) /N = (-172) 2 /12 = 2465.33

Сy = ∑Х1 2 - C = ( (-5) 2 +402 + (-33) 2 + 302 + (10) 2 + 322 + (-40) 2 + (-77) 2 ) + (-16) 2 + 282 + (-43) 2 + (-78) 2 - 2465.33= 25+1600+1089+900+100+1024+1600+5929+256+784+1849+6084 - 2465.33= 18774.67

Cp = ∑P2 /l - C = ( ( (-31) 2 + 1002 + (-116) 2 + (-125) 2 ) /3) - 2465.33= (961+10000+15625+13456) /3-2465.33 = 10882.00

Cv = ∑V2 /n-C = ( (322 + (-95) 2 + (-109) 2 ) /4 - 2465.33) = (1024+9025+11881) /4 - 2465.33 = 3017.17

Cz = Сy - Cp - Cv = 18774.67 - 10882.00 - 3017.17 = 4875.5

Теперь можно заполнить таблицу дисперсионного анализа

Результаты дисперсионного анализа (табл.7)


Таблица 7

Результаты дисперсионного анализа

Дисперсия Сумма квадратов Степени свободы Средний квадрат Fф F05
Общая 18774.67 11 - - -
Повторений 10882.00 3 - - -
Вариантов 3017.17 3 1005.72 1.031 5,41
Остатки (ошибки) 4875.5 5 975.1 - -

Значение критерия F находим по таблице для 3 степеней свободы дисперсии вариантов и для 5 степеней свободы дисперсии ошибки. Вывод: так как Fф < F05 , нулевая гипотеза не отвергается, между всеми выборочными средними нет существенных различий. Судя по опытным данным, лучшая урожайность картофеля - по первому варианту. Далее проведем выбор лучшего урожая для ячменя. Исходные данные приведены в табл.8

Таблица 8

Урожайность ячменя, 10-2 т с 1 га

Вариант Повторение, Х Сумма V Средняя хср
1 2 3 4
1 57,6 59,2 51,1 56,8 224,7 56,175
2 49,5 53,2 50,7 58,5 211,9 52,975
3 56.6 60.9 52.6 56.3 226,4 56,6
∑Р 163,7 173,3 154,4 171,6 ∑Х = 663 Хср 0 = 55,25

Преобразования дат произведем в табл.9

А = 55

Таблица 9

Таблица преобразованных дат

Вариант Х1 = Х-А Сумма V
1 2 3 4
1 -2,6 4,2 -3,9 1,8 -0,5
2 -5,5 -1,8 -4,3 3,5 -8,1
3 1,6 5,9 -2,4 1,3 6,4
∑Р -6,5 8,3 -10,6 6,6 ∑Х = - 2,2

Общее число наблюдений: N= l*n = 3*4 = 12

Корректирующий фактор С = (∑Х1 2 ) /N = (-2,2) 2 /12 = 0,403

Сy = ∑Х1 2 - C = ( (-2,6) 2 +4,22 + (-3,9) 2 + 1,82 + (-5,5) 2 + (-1,8) 2 + (-4,3) 2 + 3,52 + 1,62 + 5,92 + (-2,4) 2 + 1,32 - 0,403= 6,76+17,64+15,21+3,24+30,25+3,24+18,49+12,25+2,56+34,81+5,76+1,69-0,403 = 151,497

Cp = ∑P2 /l - C = ( ( (-6,5) 2 + 8,32 + (-10,6) 2 + 6,62 /3) - 0,403= (42,25+68,89+112,36+43,56) /3-0,403 = 88,617

Cv = ∑V2 /n-C = ( ( (-0,5) 2 + (-8,1) 2 + 6,42 ) /4 - 0,403) = (0,25+65,61+40,96) /4 - 0,403 = 26,705

Cz = Сy - Cp - Cv = 151,497 - 88,617- 26,705 = 36,175

Теперь можно заполнить таблицу дисперсионного анализа

Результаты дисперсионного анализа (табл.10)

Таблица 10

Результаты дисперсионного анализа

Дисперсия Сумма квадратов Степени свободы Средний квадрат Fф F05
Общая 151,497 11 13,77 - -
Повторений 88,617 3 29,539 - -
Вариантов 26,705 3 8,901 1,23 5,41
Остатки (ошибки) 36,175 5 7,235 - -

Значение критерия F находим по таблице для 3 степеней свободы дисперсии вариантов и для 5 степеней свободы дисперсии ошибки.

Вывод: так как Fф < F05 , нулевая гипотеза не отвергается, между всеми выборочными средними нет существенных различий.

Судя по опытным данным, лучшая урожайность ячменя - по третьему варианту.

Список литературы

1. Доспехов Б.А. Методика полевого опыта. - М.: Агрохимиздат, 1985.

2. Литтл Т., Хиллз Ф. Сельскохозяйственное дело. Планирование и анализ. - М.: Колос, 1981.

3. Опытное дело в полеводстве / Под ред. проф. Г.Ф. Никитенко. - М.: Россельхозиздат, 1982

4. Методика государственного сортоиспытания сельскохозяйственных культур. Выпуск первый / Под ред. Д., с.-х. н. М.А. Федина. - М., 1985.

5. Сурков Н.Н., Дормидонтова И.М. Методика опытного дела: Методические указания и задания для лабораторных занятий. - М.: ВСХИЗО, 1989.

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ