регистрация / вход

Определение логических понятий

Содержание Основные операции над понятиями. Страница Характеристика понятия и операций над понятиями Обобщение и ограничение понятия. Страница 1 Операция определения понятия.

Содержание

1. Основные операции над понятиями. Страница 1

Характеристика понятия и операций над понятиями

Обобщение и ограничение понятия. Страница 1

Операция определения понятия. Страница 2

Операция деления понятия. Страница 4

Отношения между понятиями Страница 6

Общие правила категорического силлогизма Страница 8

Правила посылок Страница 10

Список литературы

1.Основные операции с понятиями

Характеристика понятия и операций над понятиями

Понятие - форма мышления, отражающая предметы в их общих существенных признаках.

Чтобы осмысленно оперировать понятиями, правильно их использовать в решении теоретических и практических задач необходимо уметь выявлять две основные логические характеристики: объем и содержание понятия.

Объем понятия - это совокупность (класс) предметов, которые мыслятся в данном понятии.

Содержание - совокупность признаков предмета (предметов), мыслимых в данном понятии.

Операции над понятиями - это такие логические действия, вследствие которых создаются новые понятия

Обобщение и ограничение понятия

Обобщить понятие - значит перейти от понятия с меньшим объемом, но с большим содержанием к понятию с большим объемом, но с меньшим содержанием. Например, обобщая понятие "Студенты, изучающие логику " мы переходим к понятию " Студенты".

Объем нового (общего) понятия шире исходного (единичного) понятия, первое относится ко второму как индивид к виду. Вместе с тем содержание понятия, образованного в результате обобщения уменьшилось, так как мы исключили его индивидуальные признаки. Для образования какого-либо нового понятия путем обобщения нужно уменьшить содержание исходного понятия, т.е. исключить его видовые (индивидуальные) признаки.

Обобщение понятий не может быть безгранично. Наиболее общими являются понятия с предельно широкими объемами - категории, например, " материя", "свойство", "движение" "любовь " и так далее.

Ограничение понятий представляет собой операцию, противоположную операции обобщения. Ограничить понятие - значит перейти от понятия с большим объемом, но с меньшим содержанием к понятию меньшим объемом, но с большим содержанием.

Иначе говоря, чтобы ограничить понятие, нужно перейти от рода к виду: увеличить его содержание путем прибавления видовых признаков. По аналогии с предыдущим примером « Студенты—заочники». Например, ограничивая понятие " студент", мы переходим к понятию " заочник", которое в свою очередь можем ограничить, образовав понятие " заочник института ВСК". Пределом ограничения понятия является единичное понятие, например, " заочник института ВСК Шнейдер Борис Владимирович ".Обобщение и ограничение не следует смешивать с мысленным переходом от части к целому и выделением части из целого, как, например час из суток.

Операция определения понятия

Часто возникает необходимость раскрыть содержание понятия, которое употребляется в рассуждении. Так, чтобы правильно изучать

логику нужно знать содержание понятия " Понятие " (Понятие - форма мышления, отражающая предметы в их общих существенных признаках).

Логическая операция, раскрывающая содержание понятия путем перечисления входящих в него признаков называется определением понятия или дефиницией. Как известно содержание понятия - это совокупность существенных признаков предмета

Как дать определение (построить дефиницию)? Определение состоит в их последовательном перечислении.

Указание главной части содержания понятия имеет вид подведения определяемого под ближайшее родовое понятие. Указание побочной части фиксирует те особенные (видообразующие) признаки, которые отличают определяемое от всех, с которыми оно соподчинено родовому понятию. Поэтому стандартная процедура определения называется определением через ближайший род и видообразующие признаки. Такое построение дефиниции не является единственно возможным, но оно встречается чаще всего. Также используется генетическое определение понятия.

Пример

студент - лицо, прослушивающее курс лекций.

преподаватель - лицо, которое читает лекции.

Из приведенных определений ясно, например, что понятия “ студент ” и “ преподаватель ” находятся в отношении несовместимости: ведь человек не может одновременно быть и тем, и другим постольку, поскольку ему бы пришлось обладать взаимоисключающими признаками (самому себе читать и слушать лекции). Конечно, в разные моменты времени, в разных ситуациях он может быть студент ом и преподавателем

Построение дефиниции должно подчиняться ряду правил.

1) Определение должно быть соразмерным.

Иначе говоря, следует перечислять только общие существенные признаки предметов, мыслимых в определяемом. В противном случае определение будет несоразмерным, что является логической ошибкой.

2) Определение должно быть четким и ясным.

В определениях не должно содержаться метафор, сравнений, неизвестных понятий. Все это чревато непониманием или нарушением закона тождества, поэтому в научно-философском, юридическом языке или в деловом общении недопустимо. Например, "Логика это круто " или " Преподаватель - кладезь знаний".

Приведенные суждения будят воображение, они уместны в художественной литературе, но в качестве строгих дефиниций недопустимы.

3) В определении не должно содержаться круга.

Это правило является частным случаем предыдущего: оно предостерегает против определение неизвестного понятия через однородное ему или производное от него, которое, естественно, тоже не может считаться известным. Пример "Логика—закон о логических принципах ".

Но тот, кто не знает значения понятия “ Логика ”, вряд ли знаком с определением “логических”. Поэтому правильная дефиниция должна раскрывать содержание искомого понятия, данное в независимых от определяемого сравнительно простых терминах.

4) Определение по возможности не должно быть отрицательным.

То есть в определении понятия следует фиксировать наличие существенных признаков мыслимых в нем предметов, а не их отсутствие. В противном случае определение неинформативно. Например, суждение: “Реферат – не диссертация” хотя и справедливо, однако практически ничего не говорит о реальном реферате.

Однако в некоторых случаях существенной может быть фиксация именно отсутствия признака, например: ”Отчисленный - человек, не сдавший академическую задолженность”.

Значение определения понятия играет важную роль в теоретической и практической деятельности. Выражая в сжатом виде знания о предмете, оно является существенным моментом в познании действительности.

Существуют операции, заменяющие определение (описание и характеристика)

Описание состоит в том, чтобы полно и точно указать адресату интересующие его признаки предмета, создать его наглядный образ.

Описание выходит за круг чисто логических операций, оно апеллирует скорее к чувственному восприятию конкретного предмета. Описание не объективно, оно имеет субъективную направленность, то есть строится с учетом того, что нужно конкретному потребителю информации (тогда как определение стремится к объективности, независимости от учета интересов того или иного субъекта).

Характеристика - операция, заменяющая определение тогда, когда оно невозможно или не требуется. Характеристика состоит в том, что перечисляются отличительные признаки или параметры предмета, имеющие значение для адресата. Характеристика, в отличие от описания, не направлена на создание наглядного образа мыслимого предмета. Она может быть использована тогда, когда этот образ вообще не существует.

Сейчас мы предложим вам не традиционное определение рекламы, а скорее перечень ее важнейших черт, пишут известные специалисты по рекламе Ч.Сэндидж, В.Фрайбургер и К.Ротцолл.

Она не претендует на беспристрастность.

Она обращается со своими специфическими призывами в рамках оплаченного места или времени и при этом четко указывает личность заинтересованной стороны.

Она многофункциональна. Она может (и не перестает) стимулировать трату денег или их накопление, цели высокие или низкие, что-то платное или бесплатное и т.д., и т.п. от имени самых разных источников, для самых разных аудиторий и по самым разным причинам.

4.Это феномен, способный принести потрясающий успех или катастрофический провал и часто действующий в обстановке конечной неопределенности.

Характеристика, как и описание часто используются в рекламных объявлениях. Какой из этих приемов выбрать - зависит от адресата рекламы. Если вы хотите воздействовать, например, на детей - потенциальных покупателей “марсов” и “сникерсов”, то целесообразно использовать описание (“... и толстый, толстый слой шоколада!”). Если же вы ставите своей целью убедить органы власти выдать лицензию на продажу этих же сладостей, то следует дать их характеристику (перечень ингредиентов, срок годности и т.п.).

Операция деления понятия

При изучении какого либо понятия встает задача раскрыть его объем, то есть распределить предметы, которые мыслятся в понятии на отдельные группы. Так, чтобы лучше понять что такое "сделка" (действие гражданина или организации, направленное на установление, изменение или прекращение гражданских прав и обязанностей). Следует разделить сделки на виды: многосторонние, двусторонние и односторонние.

Логическая операция, раскрывающая объем родового понятия путем перечисления соответствующих ему видовых понятий называется Делением.

Термин "деление понятия" описывает два взаимосвязанных процесса: мысленное деление объема родового понятия на подклассы, а также соотнесение родового и вводимых для описания образовавшихся подклассов видовых понятий.

Логическая операция, состоящая в ряде последовательных актов деления, называется классификацией.

Деление и классификация - по сути однородные операции, различающиеся лишь количественно (числом актов деления). Но если в случае деления понятия акцент обычно делается на одном из параллельных процессов - на установлении соотношения "родовое понятие - видовые понятия", то в случае классификации - на втором, а именно на подразделении исходного класса на все более мелкие подклассы (объемы видов и “видов видов”...). Поэтому обычно говорят "деление понятия", но “классификация предметов” (например, бабочек или законов).

В структуре логического деления есть три элемента: делимое (родовое понятие), члены деления (видовые понятия), основание деления.

Основание деления - признак (или совокупность признаков), по которому проводится деление.

В зависимости от характера основания логическое деление делится на виды: дихотомическое и деление по видоизменению признака.

Деление понятия (классификация) должно подчиняться ряду правил.

1) Деление должно быть соразмерным.

Иначе говоря, объединение объемов членов деления должно давать объем делимого понятия. Нарушение данного правила - несоразмерное деление (некоторые члены не указываются).

Если нет возможности или необходимости перечислять все члены деления, то процедура корректно "закрывается" выражениями типа “и так далее”, “и тому подобное” и им подобным, а также троеточием.

2) Деление должно проводиться по одному основанию.

Нарушение этого правила будет состоять в том, что процесс деления ведут по одному основанию, а продолжают,/заканчивают по другому, Например: студент ы делятся по успеваемости на успевающих и неуспевающих. По национальному признаку - русские, евреи, узбеки. Но нельзя смешивать и делить на успевающих , неуспевающих и узбеков (хотя связь может быть)

3) Члены деления должны исключать друг друга.

Иначе говоря, в результате деления должно получить несовместимые (точнее, соподчиненные) понятия. Причиной нарушения этого правила бывает нарушение предыдущего.

4) В ходе классификации деление должно быть непрерывным.

Это значит, что в процессе деления исходного родового понятия следует переходить к его ближайшим видовым, не пропуская (“не перескакивая”) их. В противном случае возникает ошибка - “скачок в делении”. Типичный ее пример: "Живые существа делятся на растения, млекопитающих животных и студентов заочников "

При операциях над классами понятий используются такие операции как сложение, умножение и деление.


Сложение (объединение)- состоит в объединении двух или нескольких классов в один класс, состоящий из элементов слагаемых классов. Например, объединяя класс "пришедших на занятие студентов" - (А) и "не пришедших на занятие студентов " - (не-А) получим класс "студентов" (В), включающее и "пришедших на занятие студентов " и " не пришедших на занятие студентов ".

Умножение (пересечение) - состоит в отыскивании элементов общим для двух или нескольких классов (множеств). Так, в результате умножения множеств, находящихся в понятиях «студент» (В) и "интеллектуал" (А), получаем новое множество « студентов-интеллектуалов » (С).


Отрицание (дополнение к классу) - дополнение к классу А называется класс НЕ-И, который при сложении с А образует универсальную область. Так исключая множество заочников из универсального класса студентов, образуем дополнение: множество студентов - «не заочников» ( студентов дневного и вечернего отделения)

Отношения между понятиями

Отношения между понятиями определяются в зависимости от объемов и изображаются в виде круговых схем (кругов Эйлера).

Если объемы двух понятий имеют общие элементы, понятия называются совместимыми. В противном случае они несовместимы. К совместимым понятиям относятся тождественные (их объемы полностью совпадают, см. рис. 1а), подчиненные (объем одного из них - видового - является частью объема другого - родового, рис. 1б), пересекающиеся (объемы этих понятий совпадают лишь частично, рис. 1в).


Рис.1.

Следовательно, графически это будет выглядеть так:

Все студенты, сдавшие реферат получают зачёт.

D -множество студентов сдавших реферат

F- множество студентов получивших зачёт

G- множество студентов списавших реферат из интернета

Н -- обучающиеся

G – студенты дневного отделения

Е -- студенты вечернего отделения

Здесь изображен типичный пример совместимых подчиненных понятий, где объем понятия, видового ( G ) и (Е) - является частью объема другого - родового (Н). А между собой эти понятия ( G и Е) являются соподчиненными

К несовместимым понятиям (обозначены K и L) относятся соподчиненные родовому понятию M (рис. а), противоположные (рис. б) и находящиеся в отношении противоречия, противоречивые (рис. в).

Понятия “ абсолютно честный ” ( P ) и “ абсолютно нечестный ” ( Q ) - противоположности (в спектре соподчиненных понятию “человек” ( M ) они занимают крайние позиции). Т. е. остается некоторое множество, к которому относится категория “ не - абсолютно честный ” или “ не - абсолютно нечестный”.


Теперь хотелось бы остановиться на общих правилах категорического силлогизма и проиллюстрировать их примерами.

1-е правило о 3-х терминах


сдача реферата(М)—условие получения зачёта( P )

студент ( S ) сдаёт реферат(М)

-------------------------------------------------------------------------

студент ( S ) получает зачёт ( P )

То понятие, которое обще для обоих посылок, называется средним термином, обозначается М. В данном примере это “сдача реферата”

Кроме среднего термина в большей посылке присутствует больший термин (Р = ”получение зачёта” ), а в меньшей - меньший термин ( S = ”студент”). Стандартными элементами посылок и заключения является также кванторы и связки.

Логическая форма силлогизма в нашем случае имеет вид:

М ¾ S

M¾P

S ¾ P

Виды силлогизма, различающиеся положением среднего термина в посылках, называются его фигурами.

Известно четыре фигуры простого категорического силлогизма.

I II III IV

M ¾ P P ¾ M M ¾ P P ¾ M

S ¾ M S ¾ M M ¾ S M ¾ S

S ¾ P S ¾ P S ¾ P S ¾ P

По характеристике кванторов и связок - обе посылки общеутвердительные. Виды фигур силлогизма, различающиеся по качеству - количеству своих посылок и заключений, называются модусами.

В третьей фигуре есть модус, у которого посылки такого качества - количества АА I .

Правильность решения можно проверить с помощью круговых схем (кругов Эйлера).


сдача реферата(М)—условие получения зачёта( P )

студент ( S ) знает предмет (М1) (М)

-------------------------------------------------------------------------

студент ( S ) получает зачёт ( P )

это пример ошибки учетверения терминов


2-е правило—средний термин должен быть распределён хотя бы в одной из посылок


например

некоторые студенты(М-)—списавшие реферат люди(Р)

все мои друзья (S) --студенты(М)

-----------------------------------------------------------

все кто списал реферат—мои друзья

это ложн ый вывод

в круговых схемах;


C существуют также правила посылок

1-одна из посылок должна быть утвердительным суждением

пример

студенты (М) не изучают логику(Р)

моя жена ( S) не студент(М)

-----------------------------------------------

моя жена (S) не изучает логику (P)

это ложн ый вывод

в круговых схемах;


2- е правило посылок-если одна посылка отрицательное суждение то и заключение должно быть отрицательным

пример

студент ,списавший реферат (М) не получает зачёт(Р)

студент Шнейдер ( S) списал реферат(М)

студент Шнейдер ( S) не получает зачёт(Р)

в круговых схемах;


3-е правило хотя бы одна изпосылок должна быть общим

суждением

некоторые студенты ( S) дают взятки(М)

иногда взятки (М) бывают в валюте (Р)

в круговых схемах;


- 12 -

4-е правило—если одна из посылок---частное суждение,то и заключение должно быть частным.


Все мои умозаключения (P+) суть правильны(М+)

Некоторые решения правительства ( S-) -правильны М-)

S
P M
Некоторые решения правительства совпадают с моими умозаключениями (P+)
ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]

Ваше имя:

Комментарий