Смекни!
smekni.com

Анализ лекарственных веществ в биологических жидкостях (стр. 2 из 4)

Период полуабсорбции (полувсасывания) — время (ч, мин), необходимое для всасывания ЛВ из места введения (кроме внутрисосудистого) в системный кровоток половины введенной дозы.

Период полураспределения (ч, мин) — условный параметр, характеризующий распределение ЛВ между центральной камерой (плазма крови) и периферической камерой (органы, ткани).

Площадь под фармакокинетической кривой — площадь фигуры, ограниченной на графике фармакокинетической кривой и осями координат, одна из которых обозначает концентрацию ЛВ в плазме крови (мкг/мл), а другая — время после введения ЛВ (мин).

2.1 Основы фармакодинамики

Разнообразные изменения, которые происходят в организме под влиянием Л В, называются фармакодинамикой.

Первичная фармакологическая реакция сопровождается процессом переноса протонов и электронов с одного вещества на другое. Это осуществляется за счет различных типов химических связей. Наиболее часто встречается ванн-дер-ваальсов тип связи. Такие связи возникают между двумя функциональными группами, одна из которых входит в состав молекулы ЛВ, а другая — в биологическую молекулу. Ван-дер-ваальсовы связи возникают в тех случаях, когда молекулы находятся на близком расстоянии друг от друга, не превышающем 0,2 нм, а энергия связи составляет 0,836-4,18 кДж/моль.

Наиболее важное значение в действии ЛВ имеют водородные связи (-ОН...О-) с энергией-8,4-21 кДж/моль. Водородная связь появляется только в том случае, если атом, участвующий в ее образовании, располагается на расстоянии не более 0,3 нм. Атом водорода может связывать атомы серы, кислорода, азота, галогенов.

Между ионами, имеющими разноименные заряды, возникают ионные связи. Возможности для их образования в организме практически безграничны ввиду наличия большого количества ионов в биологических средах. Энергия ионных связей составляет -21-42 кДж/моль, но длительность их существования в организме очень непродолжительна и не превышает 10~5 с.

Немалую роль в фармакологических реакциях играет ион-дипольная связь, имеющая энергию порядка -8,4-21 кДж/моль. Такая связь ориентирует молекулы ЛВ относительно соответствующей функциональной группы фермента или рецептора. Возможны также диполь-дипольные связи, участвующие в фиксации ЛВ на функциональной группе рецептора. Их энергия равна -4,2-12,5 кДж/моль.

Наиболее прочной является ковалентная связь. Она образуется между двумя атомами за счет общей пары электронов и имеет энергию 42-627 кДж/моль.

Таким образом, основой первичного взаимодействия между Л В и тканями организма является процесс, сопровождающийся образованием ван-дер-ваальсовых, водородных, ионных, дипольных связей. Предполагается, что ЛВ притягивается рецептором, затем происходит ориентация его молекулы и, наконец, фиксация молекулы на рецепторном поле. Следовательно, специфический ответ клетки органа или организма в целом происходит после адсорбции ЛВ на рецепторе.

Биофармацевтические и фармакокинетические исследования позволяют решить ряд практических задач, например дать рекомендации по изменению физических или химических свойств Л В для повышения их фармакологической активности; обосновать оптимальный выбор биофармацевтических факторов при производстве тех или иных ЛФ. Практическое значение имеют и такие рекомендации, как уточнение показаний и противопоказаний, установление рациональных терапевтических доз и периодичности их приема в течение суток, определение оптимальных путей введения ЛС в организм, разработка научно обоснованных схем лечения тех или иных заболеваний.


3. Понятие о биофармацевтических факторах

ЛС представляют собой сложные химические системы, которые вступают в определенные взаимодействия с биологическими системами организма. На этот процесс существенно влияют самые различные факторы, известные под названием биофармацевтических факторов. Наиболее существенными из них являются полиморфизм, степень дисперсности, физические и химические свойства вспомогательных веществ, используемых при изготовлении лекарственных форм.

Фармакологическое действие кристаллических веществ зависит от образования полиморфных форм. Полиморфизм — способность вещества одной и той же химической структуры кристаллизоваться в различных формах, т. е. изменять свою сингонию в зависимости от термодинамических условий. Одно и то же вещество при соответствующих условиях может образовывать несколько полиморфных структур, отличающихся друг от друга физическими и физико-химическими свойствами. Они могут отличаться по плотности, удельной теплоемкости, проводимости, оптическим и другим константам. Установить наличие таких модификаций можно по растворимости, температуре плавления, а также с помощью физико-химических методов (ИК-, ЯМР-спектроскопия).

Степень дисперсности оказывает большое влияние на процесс всасывания и терапевтическую активность. Как правило, последняя возрастаете уменьшением размера диспергированных частиц ЛВ. Уменьшение в 30 раз (по сравнению с принятым ГФ) размера частиц кислоты ацетилсалициловой усиливает вдвое ее действие на организм. Если подвергнуть очень тонкому измельчению сульфаниламидные препараты, некоторые препараты гормонов, то адекватная терапевтическая активность при их применении достигается вдвое меньшими дозами. В некоторых случаях, например при применении производных нитрофурана, ЛВ следует назначать в виде крупных кристаллов, чтобы уменьшить раздражающее действие на слизистые желудочно-кишечного тракта.

Биофармацевтические исследования очень важны для оценки роли физических и химических свойств вспомогательных веществ, используемых для приготовления ЛФ. Вспомогательные вещества далеко не индифферентны в химическом и фармакологическом отношении. Они могут снижать фармакологическую активность ЛВ, повышать ее и даже изменять характер фармакологического действия под влиянием различных физических и химических процессов.


4. Способы установления биологической доступности лекарственных средств

Биологическая доступность — это степень всасывания JIBиз места введения в системный кровоток и скорость, с которой этот процесс происходит. Такое понятие признано ВОЗ.

Терапевтический эффект зависит от того, какая часть введенного JIBпопадет в системный кровоток и затем будет доставлена в те ткани или органы, в которых осуществляется его специфическое действие. Этот показатель характеризует биологическую доступность. При внутривенном введении она равна 100%, при всех других способах применения — всегда ниже 100%. Это вызвано тем, что, прежде чем попасть в кровоток, JIBдолжно пройти целый ряд биологических мембран клеток слизистой желудка, печени, мышц и т.д.

На биодоступность оказывают влияние биофармацевтические факторы, в частности лекарственная форма, пути ее введения, индивидуальные особенности организма человека, физиологическое и патологическое состояние желудочно-кишечного тракта, сердечно-сосудистой системы, печени, почек и др.

Биодоступность изучают путем сравнительного исследования изменений концентраций JIBв плазме крови или в моче после введения испытуемой и стандартной ЛФ. Поскольку внутривенное введение обеспечивает 100%-ную биодоступность, можно установить абсолютную биодоступность, т.е. долю всосавшегося в организм ЛВ, введенного различными путями, по отношению к его количеству после внутривенного введения. Значительно чаще определяют относительную биодоступность, которая отражает сравнительную оценку всасывания одного и того же ЛВ из испытуемой и стандартной ЛФ. Определение ведут по содержанию ЛВ в крови или в моче после однократного или многоразового введения.

Терапевтическая неэквивалентность ЛВ (ЛФ), изготовленных по различным технологиям (или различными фирмами), зависит от различной их биодоступности. В связи с этим существует понятие биоэквивалентности лекарственных веществ. Биоэквивалентность устанавливают по таким трем параметрам, как максимум концентрации ЛВ в крови, время достижения максимальной концентрации и площадь под кривой изменения концентрации ЛВ в плазме или сыворотке крови, измеренная во времени. Биоэквивалентными называют такие ЛВ, которые обеспечивают одинаковую концентрацию в крови и тканях организма. Нередки случаи, когда аналогичные ЛВ биологически неэквивалентны, так как имеют различную биодоступность. Поэтому при оценке биоэквивалентности следует учитывать важнейшие параметры биодоступности ЛВ. Иными словами, оптимизация лекарственной формы должна осуществляться с точки зрения обеспечения максимально возможной для данного ЛВ степени биодоступности.

Биологическую доступность ЛС можно установить тремя различными путями: методами invitroс помощью приборов; методами invivoна животных или у здоровых людей-добровольцев. Установление биологической доступности методами invitroосновано на корреляционной зависимости между скоростью всасывания и скоростью растворения ЛВ. Поэтому для растворимых веществ метод определения скорости растворения служит основным методом определения эффективности высвобождения ЛВ из ЛФ.

Принцип действия созданных для этого многочисленных приборов заключается в механическом разрушении ЛФ и диффузии ЛВ в воду или другую растворяющую среду, имитирующую биологическую жидкость. По мере высвобождения или после полного высвобождения ЛВ растворяющую жидкость удаляют из прибора. Полученные пробы подвергают анализу, используя химические или физико-химические методы. Аналитический контроль — важнейший этап испытания. Лекарственная форма признается соответствующей требованиям скорости высвобождения, если в течение установленного интервала времени из нее переходит в растворяющую жидкость оптимальное количество ЛВ. Следует отметить, что изучение кинетики высвобождения лекарственного вещества invitroв модельных условиях не может заменить исследования invivo. Вызвано это различием в механизмах протекающих процессов. Так, при всасывании invivoвслед за стадией растворения ЛВ следует стадия проникновения через стенки желудка и кишечника. В то же время в условиях invitroмоделируется лишь стадия растворения.