Смекни!
smekni.com

Методы анализа лекарственных препаратов (стр. 12 из 21)

Известны различные варианты использования метода УФ-спектрофотометрии для идентификации. При испытаниях на подлинность идентифицируют лекарственные вещества по положению максимума светопоглощения. Чаще в фармакопейных статьях приведены положения максимума (или минимума) и соответствующие им значения оптических плотностей. Иногда используют метод, основанный на вычислении отношения оптических плотностей при двух длинах волн (они обычно соответствуют двум максимумам или максимуму и минимуму светопоглощения). Идентифицируют целый ряд лекарственных веществ также по удельному показателю поглощения раствора.

Весьма перспективно для идентификации лекарственных веществ использование таких оптических характеристик, как положение полосы поглощения в шкале длин волн, частота в максимуме поглощения, значение пиковой и интегральной интенсивности, полуширина и асимметрия полос, сила осциллятора. Эти параметры делают более надежной идентификацию веществ, чем установление длины волны максимума светопоглощения и удельного показателя поглощения. Эти константы, позволяющие охарактеризовать наличие связи между УФ-спектром и структурой молекулы, были установлены и использованы для оценки качества лекарственных веществ, содержащих гетероатом кислорода в молекуле (В.П.Буряк).

Объективный выбор оптимальных условий количественного спектрофотометрического анализа можно осуществить только предварительным исследованием констант ионизации, влияния природы растворителей, рН среды и других факторов на характер спектра поглощения.

В НТД приведены различные способы использования УФ-спектрофотометрии для количественного определения лекарственных веществ, являющихся витаминами (ретинола ацетат, рутин, цианокобаламин), стероидными гормонами (кортизона ацетат, преднизон, прегнин, тестостерона пропионат), антибиотиками (натриевые соли оксациллина и метициллина, феноксиметилпенциллин, левомицетина стеарат, гризеофульвин). В качестве растворителей для спектрофотометрических измерений обычно используют воду или этанол. Расчет концентрации проводят различными способами: по стандарту, удельному показателю поглощения или калибровочному графику.

Количественный спектрофотометрический анализ целесообразно комбинировать с установлением подлинности по УФ-спектру. В этом случае раствор, приготовленный из одной навески, можно использовать для обоих этих испытаний. Чаще всего при спектрофотометрических определениях применяют способ, основанный на сравнении оптических плотностей анализируемого и стандартного растворов. Определенных условий анализа требуют лекарственные вещества, способные образовывать кислотно-основные формы в зависимости от рН среды. В таких случаях необходимо предварительно подбирать условия, в которых вещество в растворе полностью будет находиться в одной из таких форм.

Для уменьшения относительной погрешности фотометрического анализа, в частности снижения систематической ошибки, весьма перспективно использование стандартных образцов лекарственных веществ. Учитывая сложность получения и высокую стоимость, они могут быть заменены эталонами, приготавливаемыми из доступных неорганических соединений (дихромата калия, хромата калия).

В ГФ XI расширена область применения УФ-спектрофотометрии. Метод рекомендован для анализа многокомпонентных систем, а также для анализа лекарственных веществ, которые сами не поглощают свет в ультрафиолетовой и видимой областях спектра, но могут быть превращены в поглощающие свет соединения с помощью различных химических реакций.

Дифференциальные методы позволяют расширить область применения фотометрии в фармацевтическом анализе. Они дают возможность повысить ее объективность и точность, а также анализировать высокие концентрации веществ. Кроме того, этими методами можно анализировать многокомпонентные смеси без предварительного разделения.

Метод дифференциальной спектрофотометрии и фотоколориметрии включен в ГФ XI, вып. 1 (с. 40). Сущность его заключается в измерении светопоглощения анализируемого раствора относительно раствора сравнения, содержащего определенное количество испытуемого вещества. Это приводит к изменению рабочей области шкалы прибора и снижению относительной погрешности анализа до 0,5—1%, т.е. такой же, как и у титриметрических методов. Хорошие результаты были получены при использовании вместо растворов сравнения нейтральных светофильтров с известной оптической плотностью; входящих в комплект спектрофотометров и фотоколориметров (В.Г.Беликов).

Дифференциальный метод нашел применение не только в спектрофотометрии и фотоколориметрии, но и в фототурбидиметрии, фотонефелометрии, интерферометрии. Дифференциальные методы могут быть распространены и на другие физико-химические методы. Большие перспективы для анализа лекарств имеют и методы химического дифференциального анализа, основанные на использовании таких химических воздействий на состояние лекарственного вещества в растворе, как изменение рН среды, смена растворителя, изменение температуры, влияние электрических, магнитных, ультразвуковых полей и др.

Широкие возможности открывает в количественном спектрофотометрическом анализе один из вариантов дифференциальной спектрофотометрии — ΔЕ-метод. Он основан на превращении анализируемого вещества в таутомерную (или иную) форму, отличающуюся по характеру светопоглощения.

Новые возможности в области идентификации и количественного определения органических веществ открывает использование производной УФ-спектрофотометрии. Метод основан на выделении индивидуальных полос из УФ-спектров, представляющих собой сумму налагающихся полос поглощения или полос, не имеющих четко выраженного максимума поглощения.

Производная спектрофотометрия дает возможность идентификации сходных по химической структуре лекарственных веществ или их смесей. Для повышения избирательности качественного спектрофотометрического анализа применяют способ построения вторых производных УФ-спектров. Вторую производную можно рассчитать способом численного дифференцирования.

Разработан унифицированный метод получения производных от спектров поглощения, который учитывает особенности характера спектра. Показано, что вторая производная имеет разрешающую способность примерно в 1,3 раза больше по сравнению с непосредственной спектрофотометрией. Это позволило использовать данный метод для идентификации кофеина, теобромина, теофиллина, папаверина гидрохлорида и дибазола в лекарственных формах. Вторая и четвертая производные в количественном анализе более эффективны по сравнению с титриметрическими методами. Продолжительность определения сокращается в 3-4 раза. Определение указанных препаратов в смесях оказалось возможным вне зависимости от характера поглощения сопутствующих веществ или при существенном уменьшении влияния их светопоглощения. Это позволяет исключить трудоемкие операции по разделению смесей.

Использование в спектрофотометрическом анализе комбинированного полинома позволило исключить влияние нелинейного фона и разработать методики количественного определения ряда препаратов в лекарственных формах, не требующие сложных расчетов результатов анализа. Комбинированный полином успешно применен при изучении процессов, происходящих при хранении лекарственных веществ и в химико-токсикологических исследованиях, так как позволяет уменьшить влияние светопоглощающих примесей (Е.Н.Вергейчик).

Спектроскопия комбинационного рассеяния (СКР) отличается от других спектроскопических методов по чувствительности, большому выбору растворителей и интервалов температур. Наличие отечественного КР-спектрометра марки ДСФ-24 позволяет применять этот метод не только для установления химической структуры, но и в фармацевтическом анализе.

Не получил еще должного развития в практике фармацевтического анализа метод спектрофотометрического титрования. Этот метод дает возможность выполнения безындикаторного титрования многокомпонентных смесей с близкими значениями рК на основе последовательного изменения оптической плотности в процессе титрования в зависимости от объема добавляемого титранта.

Фотоколориметрический метод широко применяется в фармацевтическом анализе. Количественное определение этим методом в отличие от УФ-спбктрофотометрии осуществляют в видимой области спектра. Определяемое вещество с помощью какого-либо реагента переводят в окрашенное соединение, а затем измеряют интенсивность окраски раствора на фотоколориметре. Точность определений зависит от выбора оптимальных условий протекания химической реакции.

Очень широко в фотометрическом анализе используются методики анализа препаратов, производных первичных ароматических аминов, основанные на использовании реакций диазотирования и азосочетания. В качестве азосоставляющего широко применяют N-(1-нафтил)-этилендиамин. Реакция образования азокрасителей лежит в основе фотометрического определения многих препаратов, производных фенолов.

Фотоколориметрический метод включен в НТД для количественного определения ряда нитропроизводных (нитроглицерин, фурадонин, фуразолидон), а также препаратов витаминов (рибофлавин,фолиевая кислота) и сердечных гликозидов (целанид). Разработаны многочисленные методики фотоколориметрического определения препаратов в лекарственных формах. Известны различные модификации фотоколориметрии и способы расчета концентрации в фотоколориметрическом анализе.

Перспективными для применения в качестве цветореагентов в фотометрическом анализе оказались такие поликарбонильные соединения, как биндон (ангидро-бис-индандион-1,3), аллоксан (тетраоксогекса-гидропиримидин), натриевая соль 2-карбэтоксииндандиона-1,3 и некоторые ее производные. Установлены оптимальные условия и разработаны унифицированные способы идентификации и спектрофотометрического определения в видимой области лекарственных веществ, содержащих первичную ароматическую или алифатическую аминогруппу, остаток сульфонил мочевины или являющимися азотсодержащими органическими основаниями и их солями (В.В.Петренко).