Смекни!
smekni.com

Ноотропные и нормотимические препараты (стр. 9 из 12)

Полученные 14,5 г технического карбамазепина (4) загружают в одногорлую круглодонную колбу с обратным холодильником, прибавляют 60 мл спирта, нагревают до растворения осадка, прибавляют 2 г активированного угля, кипятят в течение 30 мин, отфильтровывают уголь, промывают 2*5 мл горячего спирта, фильтрат охлаждают и выдерживают при 0°С в течение 4 ч.

Выпавший осадок отфильтровывают, промывают 2*5 мл холодного спирта, сушат в вакуум-сушильном шкафу при 65-70 °С и получают 10,7 г фармакопейного карбамазепина (4) с т. пл. 190—191,5°С. После упаривания маточного раствора и кристаллизации получают еще дополнительно 1,1 г (4) с т. пл. 189.5—191,5°С. Общий выход (4) 11,8 г, что составляет 66,7% от теоретического, считая на (6), или 60%, считая на исходный (5) [13].

5.3 Баклофен

При обработке 4-ClC6H4COOH (1) и посредством SOCl2 образуется 4‑ClC6H4COCl (2). Восстановлением (2) по Розенмунду получен 4‑ClC6H4CHO (3), конденсация которого с АсCH2COOEt (4) приводит к 4‑ClC6H4CH[CH(Ac)COOEt]2 (5). При щел. гидролизе (5) образуется 4‑ClC6H4CH(CH2 COOН)2 (6), который при кипячении с Ас2О циклизуется в соответствующий ангидрид (7). Реакция (7) с конц. NH4OН приводит к


4-ClC6H4CHCH2 CONНCOCH2(8)

При обработке (8) посредством Br2 в NaOH образуется 4‑ClC6H4CH(CH2 COOН) CH2NH2 (9).

Реакция 4-ClC6H4CH=C(COOEt) 2 (10) с КСN приводит к 4‑ClC6H4CH(CH2COOEt)СN (11), при гидрировании которого образуется 4‑ClC6H4CH(CH2 COOEt)CH2NH2 (12). К-тным гидролизом (12) превращен в 4-ClC6H4CH(CH2COOОН)CH2NH2 (13). При возгонке 4‑Cl‑3‑BrC6H3CH(CH2COOОН)CH2NH2 (14) образуется 4‑(3‑бром‑4хлорфенил)‑2‑пирролидон (15).

При восстановлении (15) посредством Н2 над Pd/C получена смесь 4‑(4‑хлор-3-Н-фенил)-2-пирролидона (16) и 4‑(3,4‑Н2‑фенил)‑2‑пирролидона (17).

Кислотный гидролиз смеси (16) и (17) приводит к смеси:

4-Cl-3-Н-C6H3CH(CH2COOH)CH2NH2(18) и3,4‑Н2C6H3CH(CH2COOH)CH2NH2 (19).

Раствор 29,1 ммоля (27,3мкюри) (1) в 35 мл SOCl2 кипятят 5ч, р-ритель отгоняют, следы SOCl2 удаляют отгонкой с ГК и получают 5,3 г (2), который используют без очистки на след. стадии.

29,1ммоля (2) гидрируют в слабом токе Н2 в смеси 50 мл ксилола, 0,35г 5% Pd/BaSO4 и 0,021 мл р-ра хинолин-сера до прекращения выделения HCl (70-75С, 28 ч), Кт отфильтровывают, фильтрат упаривают и получают 6,9 г неочищ(3). К р-ру 29,1 ммоль (3)в 4 мл сп.+58,4 ммоль (4) и 1,28 мл пиперидина, выдерж-т 16 ч, прибавляют 50 мл ГК, охлаждают до 0°С и отфильтровывают (5), выход 65%, т. пл. 152-4°С.

Р-р 7,25 г (18,9 ммоля) (5) в 50 мл диоксана прибавляют к смеси 30 мл сп. и 31 г 50% NaOH (100°С, 3ч), выдерживают (100°С, 1ч), охлаждают, орг. р-ритель отгоняют, водн. р-р подкисляют 35 мл конц HCl (0°С), осадок отфильтровывают и получают 3,8 г (6), т. пл. 161-3°С.

Кипятят 3,8 г (6) в 20 мл Ас2О (1ч), р-ритель отгоняют, остаток р-ряют в 5 мл бзл. и высаживают (7) посредством ГК (0°С), получают 3,4 г (7), т. пл. 127-129°С.

К 3,4 г (15,1 ммоля) (7) постепенно прибавляют 15 мл конц. NH4OH (0°С), нагревают (70°С, 0,5 ч), р-ритель отгоняют, остаток нагревают(185°С, 1ч, масляная баня) и получают (8).

15,1 ммоля (8) р-ряют в 16 мл воды, содержащей 0,7 г NaOH (50°С), охлаждают (10-15°С) прибавляют раствор 3,3 г NaOH в 16 мл воды, затем 1,35 мл Br2, выдерживают (20°С, 4 ч), обрабатывают углем, упаривают в вакууме до 20 мл, нейтрализуют до рН 6,5-7 разб. HCl (1:1), осадок отфильтровывают, р-ряют в 15 мл 1н. NaOH, нейтрализуют 1н. HCl до рН 6,5-7, осадок отфильтровывают, сушат в вакууме (25°С/0,01) и получают 1,55г (9) (уд. акт. 4,4 мкюри/ч); из маточного р-ра выделено дополнительное количество (9), общий выход 8,1 мкюри (30%,считая на (1). К р-ру 0,603 г (49,6 кюри) КСN в 1 мл воды прибавляют раствор 2,32 г (9) в 22 мл сп., нагр‑т (70°С, 16 ч, N2), охлаждают (0°С), осадок отфильтровывают, к фильтрату прибавляют 1,6 мл 1н HCl и отгоняют р-ритель. Остаток растворяют в эф., пром-т водой и из орг. слоя выделяют 71,8% (11), т. кип. 140°С/0,05.

Р-р 1,63 г (11) в смеси 11 мл сп. и 0,75 мл 10н. HCl гидрируют над 0,06г PtO2 (20°С, 7 ч), Кт отфильтровывают, фильтрат упаривают, остаток обрабатывают эф. и получают 1,46 г ХГ (12), к-рый кипятят 16 ч с 17 мл 5н. HCl, охлаждают, р-ритель удаляют лиофилизацией, остаток кристаллизуют из смеси сп.-эф. и получают 1,1 г ХГ (13). Выделение и очистку (13) проводят аналогично соединению (9). Получают 19,5 мкюри (13) (39%, считая на КСN).

0,5 г (14) трижды возгоняют (250°С/0,1-0,5) и получают 0,392 г (15), т.пл. 129-32°С/бзл).

Смесь 0,275 г (15), 0,1 г NaОAc, 0,06 г 10% Pd/C и 10мл EtOCH2CH2OH замораживают жидким N2, с-му вакуумируют, заполняют 190 кюри Н2, смесь гидрируют при 20°С (24 мин), избыток Н2 адсорбируют на уране, с-му продувают N2, смесь фильтруют, фильтрат подвергают лиофильной сушке. Остаток раств-т в 10 мл МеОН и вновь лиофилизуют (3 раза). Остаток р-ряют в 10 мл ЭА2 прибавляют 2 мл воды, органический слой отд-т, а водн. экстрагируют 30 мл ЭА, объединенные орг. экстракты пром-т 30 мл воды. Половину полученного раствора лиофилизуют, остаток нагревают в ампуле в 3 мл 6н.HCl(100°С, 2,5 ч), р-ритель отгоняют и хроматографией на СГ в с-ме втор.ВuOH-AcOH-вода (67:10:23) выделяют (18) (3,2 кюри) и (19) (2,4 кюри).

Очистка (18) рехроматогрфией на СГ приводит к 2,03 кюри (18) (уд. радиоакт. 9,38 кюри/ммоль), к-рый хранят в виде р-ра в указанной смеси при пониженной температуре [15].

5.4 Пикамилон

ГАМК плохо проникает в мозг и для практического повышения ее уровня в мозге необходима инъекция в дозе 3 г/кг (29,1 ммоль/кг). Одним из факторов, который препятствует ГАМК проходить через биологические барьеры, является ее высокая полярность, связаная с цвиттерионной структурой этой аминокислоты, поэтому одно из направлений создания новых ноотропных средств на основе молекулы ГАМК состоит в получении ее аналогов и производных с более низкой полярностью, которые были бы способны проходить через ГЭБ и действовать на ГАМК – рецепторы. Среди различных теоретически возможных вариантов получения таких веществ был выбран путь, состоящий в химическом связывании аминогруппы ГАМК с веществами – носителями, которые являются постоянными метаболитами организма человека и хорошо проникают в мозг. В качестве таких носителей использовались природные органические кислоты, включая витамины и их предшественники, полученные при этом соединения обладали разнообразной фармакологической активностью. Выбор никотиновой кислоты в качестве носителя был сделан по следующим причинам: наличие реакционноспособной карбоксильной группы определяет возможность связывания с концевой NH2 - группой ГАМК с образованием амида, что значительно снижает основность и, как можно было ожидать, сделает молекулы менее полярной и более проницаемой для ГЭБ; никотиновая кислота обладает ценными фармакологическими свойствами, малотоксична, содержится в мозговой ткани и проникает в мозг, в то же время ее самостоятельный лечебный эффект относительно невысок. Поэтому и возникла идея сочитания никотиновой кислоты и ГАМК в одной молекуле, которое могло бы привести к веществу, проходящему через ГЭБ, с более высокой фармакологической активностью по сравнению с активностью его компонентов. Реализация такого предположения и привела к синтезу N-никотиноил-ГАМК (1), экспериментальное изчение которой и подтвердило эффективность такого подхода. Первоначальные исследования показали, что полученное вещество проникает в мозг и оказывает депримирующее влияние на центральную регуляцию мозгового кровообращения. В результате дальнейших широких исследований на основе натриевой соли никотиноил-ГАМК (2) был создан новый ноотропный препарат пикамилон.

5.4.1 Синтетические исследования

Принципиально амид никотиновой кислоты и ГАМК модет быть получен ацилированием ГАМК различными производными никотиновой кислоты в присутствии основания. Первый синтез соединения (1) был осуществлен в 1970 г. конденсацией азида никотиновой кислоты и ГАМК в щелочной среде при комнатной температуре и приводил к целевому продукту с выходом 50%. Однако этот метод имеет ряд существенных недостатков, связаных с получением азида никотиновой кислоты, являющегося неустойчивым веществом, склонным к разложению со взрывом.

Реакцией хлорангидрида никотиновой кислоты с натриевой солью ГАМК в водном растворе получают амид (1) с выходом 30 %. Низкий выход обусловлен, по-видимому, тем, что в условиях реакции Шоттен – Баумана в водной среде хлорангидрид достаточно быстро гидролизуется, а применение органических растворителей было затруднено из-за низкой растворимости в них исходных веществ. Аналогичные результаты получены и при использовании смешаного ангидрида никотиновой и угольной кислот.

5.4.2 Экспериментальная химическая часть

Получение N-никотиноил-ГАМК (1).

К раствору 0,75 г ГАМК и 0,74 г гидрата окиси натрия в 10 мл воды при 0-5°С прибавляют небольшими порциями 1 г хлоргидрата хлорангидрида никотиновой кислоты. После полного прибавления смесь перемешивают в течение 1 часа при 5 °С и оставляют нагреваться на воздухе до 20°С. Раствор подкисляют концентрированной соляной кислотой до рН 3,0-3,5, выпавший осадок отфильтровывают, промывают холодной водой и сушат в вакууме. Выход 38%, т.пл. 213-214°С. Найдено, %: C 57.68, H 5.76, N 13.46. Вычислено, %: C 57.43, H 5.82, N 13.12.[22]