Смекни!
smekni.com

Общие требования предъявляемые к стимуляторам мышц человека в многоканальная электростимуляция опорно-двигательного аппарата (стр. 2 из 3)

Результаты исследования больных с центральными параличами и парезами различной этиологии до лечения», в процессе (через 8, 10 сеансов) и после восстановительного курса лечения по методу ПМБЭУ показали, что амплитудные и частотные электрические я механические характеристики нервно-мышечных групп при патологии двигательной функции центрального происхождения в общем подчиняются тем же закономерностям, которые имеют место у здоровых людей.

Большом разброс самих величин электрических и механически параметров не позволил выявить их отличий в норме и при патологии двигательной функции центрального происхождения. Поэтому для управления мышечной активностью при патологии двигательной функции центрального происхождения, как и для управления мышечной активностью здоровых людей, по физиологическим и функциональным показателям наиболее приемлемыми частотами синусоидального стимулирующего сигнала является область 2— 5 кГц, а прямоугольных импульсов — 80—200 Гц при длительности 0,1—0,5 мс.

Индивидуально для каждого больного изменение электрических и механических характеристик пораженных нервно-мышечных групп в процессе лечения подчиняется определенным закономерностям, которые отражают процесс восстановления двигательной функции. Так, у большинства больных с центральными гемипарезами, у которых в результате восстановительного лечения имело место клинически наблюдаемое улучшение двигательной функции в лучезапястном суставе, при исследовании после окончания курса лечения наблюдалось снижение мощности стимула, вызывающего возбуждение и сокращение мышечных групп, и возрастание мышечного напряжения в пределах комфортной зоны. Все случаи наблюдавшихся изменений энергетических затрат на возбуждение и сокращение могут быть разделены на две группы: апериодические изменения мощности стимула в процессе восстановительного лечения и колебательные изменения. Последняя особенность свидетельствует о том, что количество сеансов в курсе лечения нужно, по-видимому, определять индивидуально для каждого больного в зависимости от течения восстановительного процесса и реакции нервной системы на используемый метод лечения. Динамика изменения энергетических затрат, необходимых для возбуждения и сокращения нервно-мышечных групп при двигательных расстройствах, может служить дополнительным критерием при оценке эффективности восстановительного лечения.

Подводя итоги анализа эффективности различных видов и параметров стимулирующего сигнала при управлении движениями е помощью поверхностных электродов, можно сделать вывод, что, исходя из функциональных, физиологических и технических показателей, наиболее приемлемыми в качестве стимулов являются прямоугольные импульсные сигналы, униполярные и биполярные, длительностью 0,1—0,5 мс и частотой повторения 80—200 Гц, а также синусоидальные сигналы в диапазоне частот 2—5 кГц.

Рекомендуемые для биоэлектроуправления движениями параметры прямоугольных импульсов примерно соответствуют по длительности хронаксии большинства мышц человека в норме и при некоторых видах патологии двигательной функции, а по частоте — порогу суммации одиночных сокращений в тетанус. Рекомендуемые частоты синусоидальных сигналов (2—5 кГц), безусловно, выходят за рамки лабильности, однако они обладают меньшей (по сравнению с низкочастотными синусоидальными сигналами) болезненностью при стимуляции и обеспечивают лучшие функциональные показатели. Именно на частотах 2—5 кГц пределы комфортной зоны и связанная с ними точность дозирования сигнала управления максимальны. Немалую роль в таком благоприятном воздействии синусоидальных сигналов повышенных частот, по-видимому, играет то, что на этих частотах создаются наилучшие условия для прохождения электрического тока через живую ткань. Приведенные выше результаты исследований по измерению сопротивления прохождения тока при стимуляции мышц поверхностными электродами дают основание считать, что на низких частотах большая часть энергии стимула выделяется в виде тепла, приводя к раздражению болевых рецепторов. При увеличении и уменьшении частоты стимула по сравнению с областью 2—5 кГц превалирование активной составляющей сопротивления (см. рис. 3.49 по частотным зависимостям фазового угла) приводит к увеличению порога возбудимости мышц, поскольку непосредственно на возбуждение приходится меньшая доля энергии стимула.

Рассмотрим принцип построения различных типов электростимуляторов мышц человека. Простейший одкоканальный электростимулятор (рис. 7) должен состоять из задающего генератора, устройства позволяющего изменять параметры сигнала задающего генератора амплитуду, частоту, длительность), усилителя мощности, разделительного устройства.

Рисунок 7 – Блок-схема электрических стимуляторов.

Задающий генератор 1 предназначен для формирования стимулирующего сигнала определенной формы и частоты. С помощью регулируемого элемента 2 (в данном случае это -может быть переменное сопротивление) сигнал с задающего генератора изменяется по амплитуде (рис. 7, а). Если же уровень воздействия регулируется изменением длительности импульсов или частоты их повторения, то блок-схема такого стимулятора имеет вид, представленный на рис. 7, б.

Усилитель мощности 3 (рис. 7 а, б) предназначен для обеспечения необходимой мощности сигнала, поступающего на выход стимулятора. Усиленный сигнал стимуляции с выхода усилителя мощности через блок разделения 4 подается на стимулирующие электроды 6. Блок разделения 4 осуществляет гальваническую развязку стимулирующих электродов и пациента от поражения электрическим током сети в случае короткого замыкания цепи питания на корпус стимулятора. В качестве блока разделения чаще всего используется трансформатор. При отсутствии гальванической развязки должна быть предусмотрена защита, которая автоматически отключала бы стимулирующие электроды от выхода стимулятора в случае пробоя сетевой обмотки силового трансформатора на корпус стимулятора.

Следует помнить, что приборы, предназначенные для использования в медицинской практике, должны удовлетворять требованиям ГОСТ на электробезопасность, согласно которым изоляция между стимулирующими электродами и корпусом стимулятора должна выдерживать напряжение 4 кВ. Использование в усилителе выходного трансформатора дает возможность обеспечить выполнение этого требования. Одновременно наличие выходного трансформатора обеспечивает разрыв гальванической связи стимулирующих электродов с источником питания, что очень существенно, так как пропитанные физиологическим раствором чехлы электродов обеспечивают надежный контакт с кожей и при случайном прикосновении к корпусу прибора или заземленным частям оборудования ток может достигнуть значений, опасных для организма.

Сигнал с выхода стимулятора поступает на стимулирующие электроды через индикатор 5, который обычно измеряет среднее значение тока стимуляции. Индикация тока стимуляции в большинстве случаев производится с помощью стрелочного измерительного прибора. Многие перечисленные функции стимулятора могут реализоваться устройством, технически выполненным в едином узле.

Так, например, в одном узле могут быть выполнены задающий генератор, усилитель мощности, а также гальваническая развязка (рис. 8).

Рисунок 8 – Принципиальная электрическая схема простейшего электростимулятора мышц человека.

Функции задающего генератора, усилителя мощности и схемы разделения может выполнять достаточно простая схема автогенератора (см. рис. 8). В этом случае амплитуда стимуляции регулируется путем изменения напряжения питания по постоянному току транзистора с помощью сопротивления К.4. Гальваническая развязка выхода генератора и стимулирующих электродов осуществляется с помощью трансформатора Тр1. Этот же трансформатор используется для создания положительной обратной связи (обмотка //), необходимой для нормальной работы схемы генератора. Элементы 1,2,3 создают необходимый режим питания схемы по переменному и постоянному току.

Представленная схема может быть использована для стимуляции отдельных мелких мышц. Максимальная выходная мощность зависит от типа применяемого транзистора Т1 и величины напряжения источника питания. К недостаткам данной схемы следует отнести малую выходную мощность, некоторую зависимость частоты стимулирующего сигнала от изменения величины нагрузки, а также наличие потерь мощности источника питания на регулировочном элементе. Для устранения перечисленных недостатков стимулирующие электроды нужно подключать через дополнительный усилитель мощности (рис. 9), благодаря чему устраняется влияние изменения величины нагрузки на параметры автогенератора. В этом случае налицо четкое разграничение функций задающего генератора, собранного на транзисторе Т1, регулирующего элемента выходной мощности (КЗ), усилителя мощности (Т2, ТЗ}. Выходной трансформатор Тр2 выполняет роль гальванической развязки.

Рисунок 9 – Принципиальная электрическая схема простейшего электростимулятора с усилителем мощности.

Одноканальные стимуляторы позволяют стимулировать одну нервно-мышечную группу. Для одновременной стимуляции нескольких нервно-мышечных групп необходимо применять многоканальные стимуляторы (рис. 9). В целях упрощения блок-схемы такого стимулятора задающий генератор выполняют общим для всех каналов стимуляции. В остальном каждый канал многоканального стимулятора должен состоять из таких же функциональных узлов, как л одноканальный стимулятор, приведенный на рис. 7, а, б.