Смекни!
smekni.com

Острая сердечно-сосудистая недостаточность (стр. 2 из 4)

Значение отрицательного давления в грудной полости. Дыхательные экскурсии относятся к экстракардиальным факторам регуляции МОС. Во время вдоха внутриплевральное давление становится отрицательным. Последнее передается на предсердия и полые вены и приток крови в эти вены и правое предсердие увеличивается. При выдохе происходит повышение давления в брюшной полости, вследствие чего кровь как бы выдавливается из брюшных вен в грудные. Отрицательное давление в плевральной полости способствует увеличению постнагрузки, а положительное (во время ИВЛ) оказывает противоположное действие. Это может служить объяснением снижения систолического давления во время фазы вдоха.

5. ОБЩЕЕ ПЕРИФЕРИЧЕСКОЕ СОПРОТИВЛЕНИЕ

Термин «общее периферическое сопротивление сосудов» обозначает суммарное сопротивление артериол. Однако изменения тонуса в различных отделах сердечнососудистой системы различны. В одних сосудистых областях может быть выраженная вазоконстрикция, в других — вазодилатация. Тем не менее ОПСС имеет важное значение для дифференциальной диагностики вида гемодинамических нарушений.

Для того чтобы представить важность ОПСС в регуляции МОС, необходимо рассмотреть два крайних варианта — бесконечно большое ОПСС и отсутствие его току крови. При большом ОПСС кровь не может протекать через сосудистую систему. В этих условиях даже при хорошей функции сердца кровоток прекращается. При некоторых патологических состояниях кровоток в тканях уменьшается в результате возрастания ОПСС. Прогрессирующее возрастание последнего ведет к снижению МОС. При нулевом сопротивлении кровь могла бы свободно проходить из аорты в полые вены, а затем в правое сердце. В результате давление в правом предсердии стало бы равным давлению в аорте, что значительно облегчило бы выброс крови в артериальную систему, а МОС возрос бы в 5—6 раз и более. Однако в живом организме ОПСС никогда не может стать равным 0, как и бесконечно большим. В некоторых случаях ОПСС снижается (цирроз печени, септический шок). При его возрастании в 3 раза МОС может уменьшиться наполовину при тех же значениях давления в правом предсердии.

Деление сосудов по их функциональному значению. Все сосуды организма можно разделить на две группы: сосуды сопротивления и емкостные сосуды. Первые регулируют величину ОПСС, АД и степень кровоснабжения отдельных органов и систем организма; вторые, вследствие большой емкости, участвуют в поддержании венозного возврата к сердцу, а следовательно, и МОС.

Сосуды «компрессионной камеры» — аорта и ее крупные ветви — поддерживают градиент давления вследствие растяжимости во время систолы. Это смягчает пульсирующий выброс и делает поступление крови на периферию более равномерным. Прекапиллярные сосуды сопротивления — мелкие артериолы и артерии — поддерживают гидростатическое давление в капиллярах и тканевый кровоток. На их долю выпадает большая часть сопротивления кровотоку. Прекапиллярные сфинктеры, изменяя число функционирующих капилляров, меняют площадь обменной поверхности. В них находятся а-рецепторы, которые при воздействии катехоламинов вызывают спазм сфинктеров, нарушение кровотока и гипоксию клеток. а-адреноблокаторы являются фармакологическими средствами, снижающими раздражение а-рецепторов и снимающими спазм в сфинктерах.

Капилляры являются наиболее важными сосудами обмена. Они осуществляют процесс диффузии и фильтрации — абсорбции. Растворенные вещества проходят через их стенку в обоих направлениях. Они относятся к системе емкостных сосудов и в патологических состояниях могут вмещать до 90 % объема крови. В нормальных условиях они содержат до 5—7 % крови.

Посткапиллярные сосуды сопротивления — мелкие вены и венулы — регулируют гидростатическое давление в капиллярах, вследствие чего осуществляется транспорт жидкой части крови и межтканевой жидкости. Гуморальный фактор является основным регулятором микроциркуляции, но нейрогенные раздражители также оказывают действие на пре- и посткапиллярные сфинктеры.

Венозные сосуды, вмещающие до 85 % объема крови, не играют значительной роли в сопротивлении, а выполняют функцию емкости и наиболее подвержены симпатическим влияниям. Общее охлаждение, гиперадреналинемия и гипервентиляция приводят к венозному спазму, что имеет большое значение в распределении объема крови. Изменение емкости венозного русла регулирует венозный возврат крови к сердцу.

Шунтовые сосуды — артериовенозные анастомозы — во внутренних органах функционируют только в патологических состояниях, в коже выполняют терморегулирующую функцию.

6. ОБЪЕМ ЦИРКУЛИРУЮЩЕЙ КРОВИ

Определить понятие «объем циркулирующей крови» довольно трудно, так как он является динамической величиной и постоянно изменяется в широких пределах. В состоянии покоя не вся кровь принимает участие в циркуляции, а только определенный объем, совершающий полный кругооборот в относительно короткий промежуток времени, необходимый для поддержания кровообращения. На этом основании в клиническую практику вошло понятие «объем циркулирующей крови».

У молодых мужчин ОЦК равен 70 мл/кг. Он с возрастом уменьшается до 65 мл/кг массы тела. У молодых женщин ОЦК равен 65 мл/кг и тоже имеет тенденцию к уменьшению. У двухлетнего ребенка объем крови равен 75 мл/кг массы тела. У взрослого мужчины объем плазмы составляет в среднем 4—5 % массы тела. Таким образом, у мужчины с массой тела 80 кг объем крови в среднем 5600 мл, а объем плазмы — 3500 мл. Более точные величины объемов крови получаются с учетом площади поверхности тела, так как отношение объема крови к поверхности тела с возрастом не меняется. У тучных пациентов ОЦК в пересчете на 1 кг массы тела меньше, чем у пациентов с нормальной массой. Например, у полных женщин ОЦК равен 55—59 мл/кг массы тела. В норме 65—75 % крови содержится в венах, 20 % — в артериях и 5—7 % — в капиллярах (табл. 2).

Потеря 200—300 мл артериальной крови у взрослых, равная примерно 1/3 ее объема, может вызвать выраженные гемодинамические сдвиги, такая же потеря венозной крови составляет всего l/10—1/13 часть ее и не приводит к каким-либо нарушениям кровообращения.

Таблица 2.

Распределение объемов крови в орга­низме

Орган или система Процент от общего объема крови
Малый круг кровообращения 20-25
Сердце 8-10
Легкие 12-15
Большой круг кровообращения 75-80
Артериальная система 15-20
Венозная система 65-75
Капиллярное русло 5-7,5

Уменьшение объема крови при кровопотере обусловлено потерей эритроцитов и плазмы, при дегидратации — потерей воды, при анемии — потерей эритроцитов и при микседеме — снижением числа эритроцитов и объема плазмы. Гиперволемия характерна для беременности, сердечной недостаточности и полиглобулии.

Метаболизм и кровообращение. Существует тесная корреляционная зависимость между состоянием кровообращения и метаболизмом. Величина кровотока в любой части тела возрастает пропорционально уровню метаболизма. В различных органах и тканях кровоток регулируется разными веществами: для мышц, сердца, печени регуляторами являются кислород и энергетические субстраты, для клеток головного мозга — концентрация углекислого газа и кислород, для почек — уровень ионов и азотистых шлаков. Температура тела регулирует кровоток в коже. Несомненным, однако, является факт высокой степени корреляции между уровнем кровотока в любой части тела и концентрацией кислорода в крови. Повышение потребности тканей в кислороде приводит к возрастанию кровотока. Исключением является ткань мозга. Как недостаток кислорода, так и избыток углекислого газа в равной степени являются мощными стимуляторами мозгового кровообращения. Клетки различно реагируют на недостаток тех или иных веществ, участвующих в метаболизме. Это связано с разной потребностью в них, разными утилизацией и резервом их в крови.

Величина резерва того или иного вещества называется «коэффициентом безопасности», или «коэффициентом утилизации». Данный резерв вещества утилизируется тканями в чрезвычайных условиях и полностью зависит от состояния МОС. При постоянном уровне кровотока транспорт кислорода и его утилизация могут возрасти в 3 раза за счет более полной отдачи кислорода гемоглобином. Иными словами, резерв кислорода может увеличиться только в 3 раза без повышения МОС. Поэтому «коэффициент безопасности» для кислорода равен 3. Для глюкозы он также равен 3, а для других веществ он значительно выше — для углекислого газа — 25, аминокислот — 36, жирных кислот — 28, продуктов белкового обмена — 480. Разница между «коэффициентом безопасности» кислорода с глюкозой и таковым других веществ огромна.

7. ПРЕДНАГРУЗКА И ПОСТНАГРУЗКА

Преднагрузка на миокард определяется как сила, растягивающая сердечную мышцу перед ее сокращением. Для интактного желудочка преднагрузкой является конечный диастолический объем левого желудочка. Поскольку этот объем определить у постели больного сложно, пользуются таким показателем, как конечное диастолическое давление левого желудочка (КДДЛЖ). Если растяжимость левого желудочка нормальна, то ДЗЛК будет равно КДДЛЖ. У больных, находящихся в отделениях интенсивной терапии, растяжимость левого желудочка, как правило, изменена. Растяжимость левого желудочка может быть значительно снижена при ИБС, действии блокаторов кальциевых каналов, влиянии положительного давления во время ИВЛ. Таким образом, ДЗЛК определяет давление в левом предсердии, но не всегда является показателем преднагрузки на левый желудочек.

Постнагрузку определяют как силу, препятствующую или оказывающую сопротивление сокращению желудочков. Она эквивалентна напряжению, возникающему в стенке желудочка во время систолы. Это трансмуральное напряжение стенки желудочка в свою очередь зависит от систолического давления, радиуса камеры (желудочка), импеданса аорты и его составляющих — растяжимости и сопротивления артерий. Постнагрузка включает в себя преднагрузку и давление в плевральной полости (щели). Нагрузочные характеристики сердца выражаются в единицах давления и объема крови.