Смекни!
smekni.com

Потенциометрический и амперометрический иммуноанализ (стр. 2 из 3)

Очевидно, вместо газоселективных электродов можно применять и ионоселективные электроды. Так, концентрацию IgG человека определяли с помощью фторид-селективного электрода после перерастворения осадка иммунного комплекса, образующегося при взаимодействии IgG человека с антителами против IgG, меченными пероксидазой. Активность ферментной метки измеряли путем определения фторидного иона, образующегося в результате катализируемой пероксидазой реакции окисления п-фторанилина под действием пероксида водорода.

В описанных выше методах с помощью селективных электродов определяли общее количество образующихся веществ или ионов. Другой подход применен Буатье и др. для определения HBgAg - поверхностного антигена гепатита В. Антитела против HBgAg иммобилизовали в желатиновой мембране, которую погружали в изучаемый раствор, затем вынимали и промывали. Мембрану инкубировали с антителами против HBgAg, меченными пероксидазой, и после промывания укрепляли на конце иодид-селективного электрода. Этот сенсор погружали в раствор, содержащий иодидный ион и пероксид водорода. Изменение потенциала электрода через 1 мин, обусловленное уменьшением активности иодидного иона в результате образования иода, использовалось для построения калибровочной кривой при определении концентрации HBgAg. Система позволяла легко определять 0,5 мкг/мл HBgAg. Эта система ближе к истинным иммуносенсорам, так как анализ можно проводить путем простого погружения ИСЭ с модифицированной мембраной в раствор пробы.

Ионофоры в ионоселективных электродных мембранах

До настоящего времени ИСЭ применяли для косвенного определения продуктов ферментативной реакции. В принципе возможно создание и таких электродов, потенциал которых будет непосредственно отражать концентрацию определяемого вещества.

Описан электрод, селективный по отношению к антителам против ДНФ.


Как показано на рис. 3 "основным элементом этого ИСЭ является поливинилхлоридная мембрана, содержащая ковалентно-связанный конъюгат ДНФ с ионофором. Антитела определяли при фиксированных концентрациях К+ и Na+. Эксперимент проводили путем погружения электрода в растворы, содержащие антитела к ДНФ, и регистрации изменений потенциала по сравнению с раствором без антител. Антитела к ДНФ определяли в диапазоне концентраций 2,8-150 мг/мл.

Описан также электрод, селективный к дигоксину; калий-селективная мембрана этого электрода состоит из ковалентно связанного с дигоксином бензо-15-крауна-5 и поливинил хлорида. Принцип иммуноанализа состоит в конкурентном связывании дигоксина в мембране и в пробе с ограниченным количеством антител. В ходе анализа некоторое количество коньюгата ионофора связывается антителами на внешней поверхности мембраны, что снижает способность мембраны к транспорту ионов. Количество связанного коныогата обратно пропорционально концентрации дигоксина в растворе. При данной концентрации иона калия на электродный потенциал влияет эффективность удаления различного количества ионофора из мембраны. Калибровочная кривая построена в диапазоне концентраций дигоксина 1-100 нмоль/л.

Амперометрический иммуноанализ

Ферментные метки. В электрохимическом иммуноанализе в качестве метки хорошо зарекомендовала себя щелочная фосфатаза. На рис.4 представлено уравнение реакции гидролиза фенилфосфата, который чаще всего применяют в качестве субстрата этого фермента. Образующийся фенол можно окислить в карбонатном буфере при + 750 мВ относительно хлорсеребряного электрода, в то время как субстрат фенил фосфат при положительном потенциале электрохимически неактивен. Образование способного окисляться продукта устраняет необходимость удаления кислорода из пробы перед анализом, как это принято в восстановительных электрохимических экспериментах. Конечно, и ранее щелочная фосфатаза использовалась в иммуноанализе, но только в сочетании со спектрофотометрическим определением продуктов.

Электрохимическое определение фенола осложняется загрязнением поверхности электрода вследствие электрополимеризации феноксильных радикалов, образующихся в результате одноэлектронного окисления фенола.

Осложнения могут возникнуть* также при работе с биологическими образцами из-за адсорбции белков на электроде, сопровождающейся уменьшением измеряемой силы тока. Подобные проблемы стимулировали создание таких методик электрохимического иммуноферментного анализа, в которых амперометрическому определению продуктов ферментативных реакций предшествует хроматографическое разделение смеси. Целью таких методик является попытка решить проблему загрязнения электродов-, а также повысить чувствительность анализа.

Разработана методика конкурентного гетерогенного иммуноферментного определения дигоксина с щелочной фосфатазой в качестве метки и с определением продукта ферментативной реакции фенола в тонкослойной электрохимической ячейке с помощью проточно-инжекционного анализа с электрохимическим детектором или жидкостной хроматографии с электрохимическим детектором.

В системе ПИА-ЭХ пробу непосредственно инжектируют в тонкослойную ячейку, тогда как в системе ЖХ-ЭХ фенол задерживается на предколонке с октилдецилсиланом. Каждая система имеет свои достоинства. Например, в ПИА-ЭХ достигается достаточно большая пропускная способность, но меньшая чувствительность, так как инжекция порождает емкостный ток, даже если компоненты раствора субстрата при используемых потенциалах электрохимически неактивны. Емкостный ток обусловлен небольшими различиями между матриксом раствора субстрата и буферной неподвижной фазой. С другой стороны, при ЖХ-ЭХ фенол отделяется от других компонентов смеси, в том числе и тех, с которыми связано возникновение емкостного тока, но это достигается только эа счет значительного увеличения продолжительности анализа.

Калибровочную кривую для дигоксина можно построить путем определения пиковых токов растворов сыворотки, содержащих известное количество этого препарата. В варианте ЖХ-ЭХ достигнут предел обнаружения 50 пг/мл; в клинических анализах результаты хорошо согласуются с результатами РИА.

Разработаны также методики конкурентного иммуноферментного анализа в варианте ЖХ-ЭХ для определения кислого а-гликопротеина и иммуноглобулина G. В последней работе достигнут предел обнаружения около 5 нг/мл. Значительно большую чувствительность Обеспечивает двухсайтовый анализ. Так, при определении IgG кролика с щелочной фосфатазой в качестве ферментной метки достигнут предел обнаружения около 10 пг/мл.

В гетерогенном электрохимическом иммуноферментном анализе полезной оказалась и высокоэффективная иммуноаффинная хроматография. Здесь колонку для ВЭИХ, представляющую собой, по сути дела, реактор многократного использования, заполняют антителами, ковалентно связанными с твердым носителем. При применении ферментной метки активность связанного фермента можно измерить путем введения субстрата и определения электроактивного продукта с помощью ЖХ-ЭХ-детектора. Режим проточно-инжекционной хроматографии позволяет тщательно контролировать состояние иммуносорбента, что очень важно для достижения хорошей воспроизводимости. Иммуносорбентные колонки стабильны по меньшей мере в течение 3 месяцев. Такой принцип положен в основу двухсайтовой иммуноферментной методики типа ELISA для определения IgG, в которой роль вторичных антител выполнял конъюгат анти-IgG козла с глюкозооксидазой, а определяли перок с ид водорода, образующийся после введения глюкозы в аффинную колонку. При времени инкубации менее 30 мин достигнута чувствительность 10-12 - 10-15М.

Недавно описана методика быстрого определения hCG с помощью двухсайтового иммуноферментного анализа и иммобилизованных на электроде антител. Активность глюкозооксидазы, связанной с вторыми антителами, определяли электрохимически с помощью медиатора переноса электронов, не прибегая к стадии отдельной инкубации. Средняя чувствительность hCG была равна 9 м. ед. /л.

Все описанные выше методики относятся к числу гетерогенных. Известны и гомогенные методы иммуноферментного анализа с амперометрическим определением. Так, концентрацию антиэпилептического препарата фенитоина можно измерять с помощью конкурентного иммуноферментного анализа, основанного на принципе ПИА, и амперометрического определения NADH. В качестве метки обычно применяют глкжозо-6-фосфатдегидрогеназу, катализирующую восстановление NAD+ до NADH. Оптимальный диапазон определения NADH равен 0,01 его концентрации, создающейся за время, необходимое для каждого анализа. Поэтому непосредственно перед введением в проточную систему пробу необходимо разбавить примерно в 100 раз.