Смекни!
smekni.com

Прибор для измерения скорости кровотока (стр. 11 из 14)

Данное заключение подтверждалось несколько раз и в последующие годы. Таким образом, в течение последнего десятилетия было общепризнанным считать ультразвуковое воздействие полностью безопасным при условии интенсивности излучения менее 100 мВт/см2. При этом в целом ряде публикаций отмечалось, что данный порог является условным и принят для определенности как временный ориентир. В дальнейшем по мере проведения дополнительных экспериментов и исследований его значение может быть пересмотрено.

Следует отметить, что большинство ультразвуковых полей, генерируемых в доплеровских режимах, относятся к категории нефокусированных. Приведенное заключение AIUM можно представить в виде графика (см. рис.17).

Рис 17. Область безопасной эксплуатации ультразвукового диагностического оборудования

На графике сплошной линией обозначена зона, в которую попадают уровни интенсивности большинства из эксплуатируемых в настоящее время ультразвуковых приборов.

В то же время в некоторых моделях приборов не все новые методы формирования изображений и режимы излучения, в том числе импульсный доплеровский, удается реализовать, руководствуясь обозначенными порогами интенсивности. Данное оборудование условно показано на графике пунктирной линией. Подтверждением представленного графика служит информация, полученная во время экспериментального исследования, проведенного на 13 приборах с непрерывным доплеровским режимом и 19 дуплексных приборах с режимом импульсного излучения. Были выбраны приборы нескольких областей клинического назначения и с различными типами датчиков. Результаты измерений продемонстрировали значительный разброс параметров. При этом, если для режима непрерывного излучения пороговый уровень интенсивности был превышен только в 30% случаев, то для дуплексных систем с импульсным режимом порог был превышен в 95% случаев. Следует отметить, что измерения проводили в максимальных положениях излучаемой мощности и частоты повторения импульсов. Безусловно, полученные данные должны быть приняты во внимание как разработчиками новой аппаратуры, так и ее пользователями.

Для урегулирования данного вопроса (разброса значений интенсивности) организация FoodandDrugAdministration в США приняла документ (см. табл.8), регламентирующий пороговые уровни интенсивности в зависимости от области клинического применения.

Таблица 8. Уровень пороговой интенсивности ультразвука в зависимости от области клинического применения

Область применения I, мВт/см2
КардиологияПериферические сосудыОфтальмологияВизуализация плодаДругие применения 430720179494

Как видно из приведенной таблицы, значения интенсивности могут превышать установленный порог в несколько раз. При этом следует руководствоваться последней фразой из заключения AIUM: "…такие эффекты не были продемонстрированы и при более высоких интенсивностях, когда произведение интенсивности и времени экспозиции составляло менее 50 Дж/см2).

В результате следует сделать вывод, что для выполнения отмеченного ограничения необходимо следить также за временем проведения обследования. Имеющиеся на сегодняшний день экспериментальные данные не позволяют определить предельно допустимые значения дозы ультразвуковых излучений, как это сделано для ионизирующих излучений. В то же время следует руководствоваться правилом минимально необходимого времени экспозиции для получения достаточной диагностической информации. Выполнение этого правила сопровождается рядом практических рекомендаций:

1) применение минимально необходимых для получения результата уровней излучаемой мощности;

2) использование минимально достаточного времени проведения процедуры;

3) применение минимально необходимых значений частоты повторения импульсов при работе в импульсном режиме;

4) предпочтительное применение режима непрерывного доплеровского излучения по сравнению с импульсным там, где это позволяет достичь адекватного результата;

5) в дуплексном режиме - переключение в режим В-сканирования сразу после получения необходимой доплеровской информации.

Следование этим рекомендациям может позволить уменьшить энергетическое воздействие на пациента в десятки раз, тем самым полностью обезопасив пациента даже от тех биологических эффектов, которые не получили значимого экспериментального подтверждения к настоящему времени, но могут быть открыты в рамках дальнейших исследований.

6.2 Системный анализ надежности и безопасности ультразвукового прибора

Цель системного анализа безопасности состоит в том, чтобы выявить причины, влияющие на появление нежелательных событий и разработать профилактические мероприятия, уменьшающие вероятность их появления.

Нормальное состояние человека - здоровье. Опасность может привести к нарушению нормального состояния человека, причинить вред его здоровью. Таким образом, под опасностью следует понимать явления, процессы, объекты, способные в определенных условиях наносить ущерб здоровью человека непосредственно или косвенно, т.е. вызывать нежелательные последствия.

Наиболее удобным способом выявления и предотвращения возможных неисправностей прибора является метод графического представления возможных причин отказов прибора вследствие присутствия определённых факторов, оказывающих вредное влияние на работу (или хранение) прибора.

В приложении 5 рассмотрено дерево возможных причин отказов прибора, выявлена причинно-следственная связь между внешними факторами и работой прибора.

Диаграммы деревьев причин возникновения отказов очень полезны для качественного изучения безопасности системы. При построении дерева необходимо пользоваться следующими правилами.

Правило 1. События, входные по отношению к операции "и", должны формулироваться так, чтобы второе было условным по отношению к первому, третье условным по отношению к первому и второму, и последнее условным по отношению ко всем предыдущим.

Правило 2. Входные событие для операции "или" должны формулироваться так, чтобы они вместе исчерпывали все возможные пути появления выходного события. Кроме того, каждое из входных событий должно приводить к появлению выходного события.

Правило 3. Для любого события, подлежащему дальнейшему анализу, вначале рассматриваются события, являющиеся входами операций "или", а затем входы операций "и". Это справедливо как для головного события, так и для любого события, анализ которого целесообразно продолжать.

При детальном рассмотрении причин отказов можно заметить, что большинство из них возникают из-за нарушения правил эксплуатации. Например, если следить за состоянием сетевого шнура или кабеля, излучателя и корпуса, то можно предотвратить их повреждения и нарушения изоляции и конструкции. При длительной непрерывной работе аппарата наступает перегрев отдельных блоков и деталей. Механические повреждения возникают в результате ударов, падений и других механических воздействий. Все это учтено, и почти всего этого можно избежать, если при эксплуатации прибора удовлетворять требованиям эксплуатации.

В соответствии с пунктом 6.1. данной главы ясно, что при эксплуатации аппарата в определенных условиях ультразвук также может оказаться вредным фактором.

При неправильном подборе дозировок ультразвука могут возникать побочные явления (головные боли, общее недомогание, усталость, отсутствие аппетита).

В связи с возникновением нежелательных последствий или чрезмерных реакций не рекомендуется применять ультразвуковое воздействие на область сердца, головного мозга, шейных вегетативных узлов, костные выступы, ткани с тяжелыми нарушениями кровообращения, на область матки при беременности, на зоны с нарушением любого вида чувствительности.

Детям ультразвуковую терапию можно назначать только с двухлетнего возраста и использовать интенсивности не выше 0,4 - 0,6 Вт/см2 при времени воздействия, не превышающем 3 минуты.

В приборе предусмотрены меры защиты (для случая удара пациента электрическим током и при отказе прибора).

На выходе усилителя мощности находится схема защиты, которая регулирует увеличение тока сигнала, превышающего 0,5 мА. В случае короткого замыкания в блоке питания используются микросхемы, защищенные от короткого замыкания. Тем самым уменьшается возможность отказа аппарата.

Непосредственное воздействие прибор оказывает на человека на этапах производства и эксплуатации и поэтому главной задачей проектировщика является учет всех факторов, которые могут принести вред человеку.

Опасным называется производственный фактор, воздействие которого на работающего человека в определенных условиях приводит к травме или другому внезапному резкому ухудшению здоровья. Если же производственный фактор приводит к заболеванию или снижению трудоспособности, то его считают вредным. В зависимости от уровня и продолжительности воздействия вредный производственный фактор может стать опасным. Опасные и вредные производственные факторы подразделяются на четыре группы: психофизические, биологические, физические и химические.

В процессе изготовления и настройки макета необходимо производить пайку радиоэлементов. При пайке выделяются пары свинца, которые ядовиты. Согласно существующим нормам предельно допустимая концентрация паров свинца составляет 0,01 мг/м3.

Пайка производится припоем ПОС-60, который содержит 60% свинца. В течении часа проводится около 50 паек, на одну пайку расходуется около 30 мг припоя, при этом в воздух выделяется 0,01 мг припоя. Таким образом, за час работы в воздухе будет содержаться m миллиграмм свинца.