Смекни!
smekni.com

Флуоресцентный иммуноанализ с полным внутренним отражением (стр. 2 из 3)

В следующих разделах описываются теория нераспространяющихся волн и ее применение для контроля реакций на поверхностях; будут также даны примеры конструкций оптических систем.

Теория. Если луч света падает на границу раздела между двумя прозрачными средами, причем луч направлен в сторону среды с меньшим показателем преломления, и если угол отражения в больше критического угла вс то происходит полное внутреннее отражение. В этом случае затухающая волна проникает на некоторое расстояние dp, меньшее длины световой волны, через поверхность отражения в среду с меньшим показателем преломления.

Согласно уравнению Максвелла, в оптически более плотной среде устанавливается стоячая синусоидальная волна, перпендикулярная отражающей поверхности. Хотя результирующий поток энергии в непоглощающую оптически менее плотную среду не имеет места, в такой ситуации возникает затухающее поле.

В силу непрерывности векторов поля амплитуда электрического поля максимальна на поверхности границы раздела и экспоненциально уменьшается с увеличением расстояния от поверхности:

Глубина проникновения, определяемая как расстояние, при котором амплитуда электрического поля становится равной £ехр, описывается уравнением:

Глубина проникновения уменьшается с увеличением в и возрастает по мере сближения показателей преломления двух сред. Кроме того, dpпропорциональна длине волны. Поэтому путем подбора ЭВО с соответствующим показателем преломления пг, угла падения и длины волны можно найти такую величину d, при которой оптическое взаимодействие будет происходить в основном с веществами вблизи поверхности или прикрепленными к поверхности и в минимальной степени с раствором.

Например, если волновод изготовлен из кварца, а прозрачной средой является водный раствор, то, как следует из уравнения, угол в будет равен 67°. Если угол в равен 70°, а длина волны света 500 нм, то d_ составляет примерно 270 нм. Считается, что размер молекулы IgGсоставляет примерно 10 * 6 нм. Поэтому состоящий из трех слоев IgG иммунный комплекс на твердой поверхности должен иметь среднюю толщину около 25 нм. На расстоянии 25 нм от поверхности сила поля еще будет равна 91% Е0. Однако при увеличении этого расстояния в два или три раза, согласно закону экспоненциального затухания, сила поля уменьшится до 83% и 76% соответственно.

Глубина проникновения - это только один из четырех факторов, которые определяют ослабление интенсивности света, вызванное поглощением пленки при внутреннем отражении. Другими факторами являются; зависящая от поляризации интенсивность электрического поля на поверхности отражения; облучаемая площадь поверхности, возрастающая с увеличением в; соотношение показателей преломления двух сред, от которого зависит сила оптического взаимодействия. Соответствующий параметр, учитывающий все эти факторы, называют эффективной толщиной слоя de. Этот параметр соответствует толщине слоя, который обладает таким же поглощением при прохождении через него света.

Для повышения чувствительности часто используют каскад элементов отражения. Число отражений и толщины:

Чем длиннее и тоньше волновод, тем больше N и тем чаще нерас-простраи яющаяся волна взаимодействует со слоем комплекса анти-тело-аитигеи на поверхности. Если в случае однократного отражения коэффициент отражения равен:

где а - коэффициент поглощения, ade - эффективная толщина слабопоглощающего слоя, то после N отражений соответствующий коэффициент отражения RNравен:

т.е. вызванное поглощением уменьшение интенсивности света возрастает в N раз.

Нераспростраияющуюся волну можно использовать для контроля реакций на поверхностях с помощью ряда оптических методов. В этом обзоре основное внимание уделено методу ПВОФ.

Полное внутреннее отражение с флуоресценцией

Если на поверхность отражения ЭВО нанести светопоглощающий материал, то интенсивность света, претерпевшего полное внутреннее отражение, будет меньше интенсивности падающего света и будет зависеть от длины волны. Его интенсивность будет зависеть от длины волны падающего света. В методе ПВОФ используются флуоресцирующие вещества и поглощенная энергия частично выделяется снова в виде флуоресценции, интенсивность которой и измеряют.

Регистрировать сигнал флуоресценции, возникающей на границе раздела волновод-раствор, можно различными способами: 1) обычным способом, помещая детектор перпендикулярно границе раздела, 2) располагая детектор на пути отраженного первичного луча.

Принимая во внимание, что при втором способе регистрации угол эмиссии света очень мал, этот способ может показаться не слишком эффективным. Однако в этом случае проявляется усиливающий эффект, а теория предсказывает, что если волновод изготовлен из плавленого кварца и второй средой с показателем преломления п2является водный раствор, то интенсивность флуоресценции может быть в 50 раз выше интенсивности флуоресценции, испускаемой перпендикулярно волноводу. Этот эффект, называемый обратным туннелированием флуоресценции, подтвержден как теоретически, так и экспериментально.

На первом этапе падающая плоская волна генерирует нераспространяющуюся волну, которая возбуждает молекулы, находящиеся вблизи поверхности, пропорционально интенсивности затухающего электрического поля. После определенного времени жизни в возбужденном состоянии эти молекулы флуоресцируют; локальное распределение интенсивности эмиссии флуоресценции очень близко распределению интенсивности возбуждения флуоресценции, описываемому уравнением, т.е. эмиссия флуоресценции - это также нераспространяющаяся волна, но с другим волновым числом. На вопрос, что происходит с нераспространяющейся волной флуоресценции, можно ответить, воспользовавшись принципом оптической обратимости. Этот принцип гласит, что свет возвращается в волновод в виде плоской волны так же, как и в первичном процессе, когда плоская волна генерирует нераспространяющуюся волну. Теоретически показано, что интенсивность эмиссии флуоресценции при критическом угле полного внутреннего отражения максимальна и-флуоресценция претерпевает внутреннее отражение.

Флуоресценция на границе раздела принципиально отличается от флуоресценции в растворе, где испускаемый свет изотропен. Флуоресценция на оптической границе раздела предпочтительно претерпевает обратное туннелирование в волновод под углом, близким к критическому. Такая флуоресценция называется анизотропной; ее необходимо учитывать при конструировании волноводов и соответствующих приборов.

Волноводы и приборы.Одним из ключевых элементов систем спектроскопии внутреннего отражения является волновод, геометрия которого зависит как от природы изучаемого образца, так и от используемого метода регистрации. Предложено большое число различных волноводов, простейшим из которых является призма отражения. Обычно применяют призму с фиксированным углом в; жидкости можно удерживать на отражающей поверхности призмы с помощью проточной кюветы. Необходимая в иммуноанализе высокая чувствительность достигается за счет элементов многократного внутреннего отражения, поскольку при увеличении числа отражений N усиливается интенсивность спектра. Величину N можно увеличить путем удлинения и утоньшения пластин. На практике длина и толщина с тем, чтобы оптимизировать различия между спектрами возбуждения и эмиссии. В описываемой системе угол в изменяли путем перемещения или вращения зеркала.

Очень перспективным элементом внутреннего многократного отражения является волоконная оптика. В волокно свет вводят под углом, большим ве; он распространяется вдоль волокна путем Полного внутреннего отражения. В настоящее время доступны световоды из волокна с высокими оптическими свойствами, предназначенные для промышленных средств связи. Такие световоды использовались в качестве ЭВО, так как в силу их небольшого диаметра и неограниченной длины эффективное число' отражений может быть очень большим. Для методов иммуноанализа с ПВОФ применяли ЭВО как в виде пластины, так и в виде цилиндрических нитей.

Как отмечалось выше, для измерения интенсивности флуоресценции на границе раздела могут быть применены два подхода.

В первом, более традиционном, подходе измеряют интенсивность флуоресценции, направленной перпендикулярно поверхности волновода. В этом случае ие возникает проблем при разработке конструкции прибора, но используется, по крайней мере теоретически, неэффективный способ измерения флуоресценции, возникающей на границе раздела. Во втором подходе с измерением флуоресценции на пути первичного луча возможны по меньшей мере два способа регистрации. Туииелироваииую флуоресценцию можно детектировать на входе или иа выходе волновода. Предложены конструкции приборов для измерения флуоресценции 1) под прямым углом к пластинчатым волноводам; 2) на выходе стекловолоконного или пластинчатого волновода; 3) на входе стекловолоконного волновода.

Целесообразно подробнее рассмотреть последнюю конструкцию, поскольку в ней могут быть применены как волоконные, так и пластинчатые ЭВО и она имеет ряд преимуществ перед другими конструкциями.