Смекни!
smekni.com

Мононуклеарный онкогенез (стр. 10 из 11)

– периферической крови: промоноцит, моноцит;

– тканевые: промоноцит, моноцит, макрофагальный бласт, промакрофаг, макрофаг.

Промоноцит и Моноцит присутствуют во всех трех группах клеток и являются промежуточным вариантом развития от костномозговой полипотентной клетки-предшественницы родоначальнице миелопоэза с последующим развитием в Моноцитарный росток (П класс) до органо- и тканеспецифического Макрофага, как конечного варианта развития.

2. Кроветворение в красном костном мозге, это единственный функционирующий очаг интенсивной пролиферации, который сохранился с эмбрионального периода развития и функционирует у взрослого человека.

3. Мононуклеары являются представителями клеток иммунокомпетентной системы и одновременно играют решающую роль в регуляции нормального гемопоэза. Мононуклеары могут ингибировать гемопоэз с помощью межклеточных взаимодействий и посредством выделения различных иммунных и не иммунных гуморальных факторов.

4. Образование клеток Моноцитарного ростка может происходить на любом этапе дифференциации от полипотентной стволовой кроветворной клетки до промиелоцита. Отличаются ли друг от друга Моноциты и Макрофаги, образовавшиеся из различных субпопуляций и каковы их специфические функции, пока не ясно.

5. Костномозговые Мононуклеары способны выходить из костного мозга в периферическую кровь, циркулировать в периферической крови по всему организму, проникать из кровеносного русла в любые органы и ткани и мигрировать в них – перемещаться в межклеточном пространстве.

6. Мононуклеар периферической крови в нормальных условиях созревает, перед тем как проникнуть в ткани, но при воспалении сроки пребывания его в периферической крови значительно сокращены, поэтому в ткани проникают его не зрелые формы, способные к активной пролиферации.

7. Тканевые Мононуклеары, это единственные клетки в организме человека, которые в нормальных условиях могут трансформироваться в другую бластную клетку – макрофаальный бласт с последующей дифференцировкой в Макрофаг.

8. Мононуклеар периферической крови, попадая в ткани, не обязательно трансформируется в Макрофаг, он может превратиться и в клетки микроокружения, например, в эпителиоидную клетку (мезенхимально-эпителиальный переход).

9. Будучи гистогенетически единой, кроветворная система в своем функционировании характеризуется определенной независимостью поведения отдельных ростков кроветворения, поэтому изначально Мононуклеары характеризуются независимостью поведения – автономностью.

10. Мононуклеары сохраняют способность к делению на всех этапах своего развития и имеют возможность трансформироваться в первичную стволовую злокачественную клетку.

11. Злокачественные клетки, подобно Мононуклеарам, обладают многими активными свойствами: влияют на пролиферацию, дифференцировку и функциональную активность различных клеток; выработку факторов роста; размножение в геле без подложки; сниженную адгезию; пониженное контактное торможение; влияние на гемопоэз; влияние на свертывающую систему крови; влияние на клеточный и гуморальный иммунитет и др.

Таким образом, тканевые Мононуклеары (Промоноцит и Моноцит), вполне могут претендовать на роль «общего начала» или клетки-предшественницы первичной стволовой злокачественной клетки солидных опухолей.

4. ГЕНОТИПИЧЕСКИЕ ИЗМЕНЕНИЯ КОСТНОМОЗГОВОГО МОНОНУКЛЕАРА

Мононуклеар, как и любая соматическая клетка, состоит из трех основных компонентов: клеточной мембраны, цитоплазмы и ядра (Рис. 9).


Рис. 9. Обобщенная схема животной клетки (Н. Грин, У. Стаут, Д. Тейлор, 1990, Т.1, стр. 211): 1 – митохондрии, 2 – цитоплазма, 3 – питательные гранулы, 4 – аппарат Гольджи, 5 – клеточная мембрана, 6 – центриоль, 7 – кариоплазма, 8 – ядрышко, 9 – хроматин, 10 – ядерная мембрана, 11 – лизосомы, 12 – секреторные гранулы.

Характеристика ядра клетки

Ядро – наиболее важная структура клетки, в нем сосредоточена основная масса ДНК, являющаяся носителем генетической информации. Кроме того, ядро регулирует всю «повседневную» жизнедеятельность клетки.

Содержимое ядра:

1. Хромосомы, в которые входит фактически вся ДНК ядра, видны как дискретные тела, когда клетка находится на стадии активного деления. В состоянии покоя в периоды между делениями клетки (интерфаза) хромосомы могут быть не видны.

2. Ядрышко – особое тельце, в котором сосредоточена большая часть РНК в покоящемся или интерфазном ядре.

3. Ядерная плазма (кариоплазма) – это жидкость, содержащая соли и белки, но не содержащая нуклеиновых кислот.

Ядро ограничено ядерной мембраной (кариолеммой), состоящей из двух липопротеидных слоев. Наружная мембрана связана с рибосомами, а к внутренней – тесно прилежит хроматин кариоплазмы. Наружная и внутренняя мембраны сливаются в области ядерных пор, через которые осуществляется транспорт белков и РНК. Поры ядерной мембраны заполнены белковым конгломератом, который изолирует кариоплазму от цитоплазмы, поэтому состав кариоплазмы, в том числе по содержанию ионов, отличается от состава цитоплазмы.

Ген – это участок ДНК, содержащий программу построения только одного определенного белка по формуле «Один ген – один белок». Информация, содержащаяся в гене, передается в цитоплазму посредством матричной, или информационной РНК. Если контакт ядра с цитоплазмой прекращается, то скорость всех реакций в клетке постепенно замедляется, и она погибает. В период деления происходит «ремонт», воспроизведение и удвоение молекул ДНК, что позволяет передать дочерним клеткам одинаковый в количественном и качественном отношении объем генетической информации.

Инициация костномозгового Мононуклеара

MillerE., MillerJ. (1966): предложили модель онкогенеза, в последствие названную, как «теория молекулярно-генетических механизмов многостадийного канцерогенеза». Процесс происходит в две стадии: инициации и промоции.

Мы считаем, что предложенная «теория молекулярно-генетических механизмов многостадийного канцерогенеза» в действительности является только частью периода «зарождения» первичной стволовой злокачественной клетки. Тогда как модель онкогенеза включает в себя более широкое толкование, о чем будет изложено ниже.

1-я стадия (инициации от лат. initium – начало) периода «зарождения» стволовой злокачественной клетки: под канцерогенным воздействием (ионизирующее излучение, эндо- и экзоканцерогены, вирусы) наряду с относительно нейтральными повреждениями генома, могут происходить значимые мутации в онкогенах и антионкогенах. При этом возникает характерный спектр нарушений на генном, хромосомном и геномном уровнях: амплификации (увеличение копийности генов), делеции, инсерции, транслокации, микромутации (точковые замены, микроделеции, микроинсерции) и др.

Важными положениями 1-ой стадии (инициации) являются:

1. Воздействие инициатора первично.

2. Доза инициатора влияет на частоту «зарождения» злокачественной клетки.

3. Инициация необратима.

4. Инициатор может быть применен однократно и кратковременно.

5. Инициатор воздействует самостоятельно.

Известно, что генотипические изменения ядерной ДНК наиболее часто возникают в процессе митоза в зоне активной пролиферации. В организме человека наиболее интенсивная пролиферация происходит в красном костном мозге, и здесь сохранился наиболее недифференцированный состав стволовых клеток, приближенных к эмбриональным.

Интенсивность пролиферации в красном костном мозге может значительно возрастать при хроническом воспалении. Это увеличение отмечается в костном мозге, периферической крови, селезенке, лимфатических узлах, перитонеальных полостях. При ускоренной пролиферации образование клеток Моноцитарной серии может происходить на любом этапе дифференциации от полипотентной стволовой кроветворной клетки до Промиелоцита. Отличаются ли друг от друга Моноциты и Макрофаги, образовавшиеся из различных субпопуляций клеток-предшественников и каковы их специфические функции – не известно.

Генотипические изменения ядерной ДНК

BoveriT.(1914): в основе малигнизации лежит мутация, возникающая под влиянием эндогенных и экзогенных канцерогенных веществ и облучения.

Во время усиленной пролиферации при стимулированном гемопоэзе, под канцерогенным воздействием (ионизирующее излучение, эндо- и экзоканцерогены, вирусы), в клетке во время митоза может проявиться свойство «геномной нестабильности».

Наряду с относительно нейтральными повреждениями генома, могут происходить значимые мутации в онкогенах и антионкогенах. При этом возникает инициированная клетка, имеющая характерный спектр нарушений на генном, хромосомном и геномном уровнях: амплификации (увеличение копийности генов), делеции, инсерции, транслокации, микромутации (точковые замены, микроделеции, микроинсерции) и др.

Генотипические изменения могут возникнуть на различной стадии гемопоэза и чем выше согласно схеме кроветворения, тем большей потентностью будет обладать стволовая злокачественная клетка. Поэтому важно знать не только какие возникли генотипические изменения ядерной ДНК, но и на каком уровне гемопоэза они возникли, т.е. важен не только характер генотипических изменений (спектр нарушения) ядерной ДНК, но и уровеньгенотипических изменений (класс по схеме кроветворения).

Как было сказано выше, все стадии гемопоэза подразделяют на шесть основных классов.В каждом конкретном случае при канцерогенном воздействии возникают различные генотипические изменения ядерной ДНК, но только на одном из вышеуказанных классов гемопоэза. Для «зарождения» стволовой злокачественной клетки солидных опухолей наиболее вероятными являются следующие уровни потентности: