Смекни!
smekni.com

Перспективы применения липосомальных форм (стр. 13 из 14)

Таким образом, приведенные авторами работы [24] результаты исследований не могут опровергнуть предположение о том, что в случае препаратов, способных доставить вещество в глубокие слои кожи, они имели дело с наночастицами, в структуру которых и встраивалось активное вещество (будь это радикальная метка или глюкоза). В другом варианте они имели дело с весьма нестабильными липосомальными образованиями, не способными доставить свое содержимое в нижние слои кожи.

Итак, это наночастицы - и не просто наночастицы, а системы, содержащие вещества, способствующие повышению проницаемости кожи или так называемые энхансеры. И, если внимательно взглянуть на текст патента [24], то, вообще-то говоря, вы не найдете здесь доводов в пользу того, что авторы в случае высокоэффективных препаратов имели дело действительно с наночастицами, а не с обычной кремовой композицией, содержащей указанные ингредиенты. Вот что говорят об этом сами авторы: "Везикулы первой категории, так называемые везикулы глубокого действия, обычно находятся в жидком состоянии, при комнатной температуре обычно находятся в состоянии геля"

Выводы

Как известно, липиды — гидрофобные соединения, то есть соединения, отталкивающие от себя молекулы воды; они являются одним из основных компонентов биологических клеточных мембран, создающих в организме энергетический резерв, а также способных образовывать защитные покровы. Свойства липосом и их поведение определяются прежде всего наличием у них замкнутой мембранной оболочки. Несмотря на молекулярную толщину (около 4 нм), липидный бислой отличается исключительной механической прочностью и гибкостью. Благодаря этому липосомы сохраняют целостность при различных повреждающих воздействиях, а их мембрана обладает способностью к самозалечиванию возникающих в ней структурных дефектов. Кроме того, гибкость бислоя и его текучесть придают липосомам высокую пластичность.

Для практического применения липосом и везикул исключительно важна их способность включать в себя и удерживать вещества различной природы. Круг веществ, включаемых в липосомы, необычайно широк — от неорганических ионов и низкомолекулярных органических соединений до крупных белков и нуклеиновых кислот. Первое применение липосом в научных исследованиях было связано с использованием липосом в качестве транспортного средства для доставки лечебных агентов в живую ткань. В 1971 г. была предпринята попытка замыкания в липосомах ферментов с последующим введением везикул в кровоток для коррекции метаболических нарушений в печени при гликогенозе. В дальнейшем разрабатывались липосомальные формы ряда противоопухолевых препаратов, комплексонов, антибиотиков, гормонов. Благодаря наличию в липосомах двухслойных мембран они могут использоваться для транспортировки как гидрофильных, так и гидрофобных лекарственных веществ. Липосомы малотоксичны и легко подвергаются биодеградации в отличие от полимерных систем с контролируемой доставкой лекарственных средств.

В настоящее время липосомальная терапия — одно из наиболее активно развивающихся направлений в фармакологии и медицине. Способность липосом включать в себя самые разные вещества практически без каких-либо ограничений в отношении их химической природы, свойств и размера молекул дает поистине уникальные возможности для решения некоторых медицинских проблем. Так, многие лекарственные препараты имеют низкий терапевтический индекс. Это означает, что концентрация, в которой они оказывают лечебное действие, мало отличается от концентрации, при которой препарат становится токсичным. В других случаях лекарственный препарат при введении в организм может быстро терять активность. Включение таких препаратов в липосомы может значительно повысить их терапевтическую эффективность, поскольку, с одной стороны, препарат, находящийся в липосоме, защищен ее мембраной от действия неблагоприятных факторов, а с другой — та же мембрана не позволяет токсичному препарату превысить допустимую концентрацию в биологических жидкостях организма. Липосома в данном случае выполняет роль хранилища, из которого препарат высвобождается постепенно, в нужных дозах и в течение требуемого промежутка времени.

С точки зрения биологической совместимости липосомы идеальны как переносчики лекарственных препаратов. Они изготавливаются из природных липидов и поэтому нетоксичны, не вызывают нежелательных иммунных реакций и биодеградируемы, то есть должны разрушаться под действием обычных ферментов, присутствующих в организме.

В настоящее время большие возможности открываются в отношении активного «адресования» липосомальных форм лекарственных веществ органу-мишени с помощью различных, в том числе физических воздействий — тепло, ионизация и т.д. Уникальной особенностью липосом является возможность доставки лекарственных препаратов внутрь клеток, с которыми они взаимодействуют путем слияния или эндоцитоза. Модифицируя мембрану липосом молекулами, обеспечивающими «узнавание» клетки или органа-мишени, можно осуществлять направленную транспортировку лекарств. Это обусловливает использование липосомальных форм препаратов для лечения внутриклеточного паразитизма (липоидный ретикулоз, кожный лейшманиоз). Очевидна перспективность применения липосомальных форм антипаразитарных препаратов также для лечения малярии и токсоплазмоза. Актуальной представляется и проблема инкапсулирования в липосомах и внутриклеточного введения нуклеиновых кислот.

В ряде лабораторий получены удовлетворительные результаты по включению нативной ДНК или РНК в липосомы, разработаны липосомальные формы противоопухолевых препаратов, таких как метотрексат, доксорубицин, винкристин, винбластин, актиномицин, L-аспарагиназа, противогрибкового препарата амфотерицин В, ряда пептидов, полиеновых антибиотиков, противовоспалительных кортикостероидных препаратов — кортизона, гидрокортизона, дексаметазона; бычьего инсулина и некоторых других препаратов.


Литература

1. Gregoriadis. G. (1995) TIBECH. 13, 527-537.

2. Yurasov V.V., Kucheryanu V.G.,. Kryzhanovsky G.N,. et al. (1996) Progress in Drug Delivery Systems. Biomedical Research Foundation, Tokyo. Eds. Sadao Hirota, 5, 171-174.

3. Kucheryanu V.G., Yurasov V.V., Kryzhanovsky G.N., et al. (1996) Progress in Drug Delivery Systems. Biomedical Research Foundation, Tokyo, Eds. Sadao Hirota, 5, 179-182.

4. Юрасов В.В., Подгорный Г.Н., Кучеряну В.Г., и др. (1996) Бюллетень эксперим. биол. мед., 122, 614-617.

5. Юрасов В.В., Кучеряну В.Г., Кудрин В.С., и др. (1997) Бюллетень эксперим. биол. мед., 123, 150-153.

6. Maeda H., Matsumura Y. (1989) Crit. Rev. Ther. Drug Carrier Syst., 6, 193-210.

7. Seymour L.V. (1992) Crit. Rev. Ther. Drug Carrier Syst. 6, 135-187.

8. Jain R.K. (1987) Cancer Metastasis Rev. 6, 559-593.

9. Huang S.K., Mayhew E., Lasic D.D., et al. (1992) Cancer Res. 52, 6774-6781.

10. Дранов А.Л., Дудниченко А.С., Бутенко К.А., Краснопольский Ю.М. (1994) Вестн. фармации, №3-4, С. 88-92.

11. Дранов А.Л., Дудниченко А.С., Мезин И.А., и др. (1996) Бюлл. экспер. биол. мед., № 8, 85-89.

12. Дудниченко А.С., Краснопольский Ю.М. (1996) Бюлл. экспер. биол. 18, 125-129.

13. Дудниченко А.С., Краснопольский Ю.М. (1996) Бюлл. экспер. биол. 18, 392-396.

14. Janoff A.S. (1992) Lab. Invest. 66, 655-658.

15. Gabizon A., Catane R., Uziely B., et al. (1994) Cancer Res. 54, 987 992.

16. Gill P.S., Espina B.M., Muggia F., et al. (1995) J. Clin. Oncol. 13, 996-1003.

17. Forssen E.A., Ross M.E. (1994) J. Lipisomes Res. 4, 481-512.

18. Northfelt D.W., Kaplan L., Russell J., et al. (1995) in Stealth Liposomes (Lasic D.D., Martin F.J., eds). 257-266. CRC Press.

19. Bogner J. R., Goebl F-D. (1995) in Stealth Liposomes (Lasic D.D., Martin F.J., eds). CRC Press. 267-278.

20. Blum G., Cevc G. (1990) Biochim. Biophys. Acta, 1029, 91-97.

21. Klibanov A.L., Maruyama K., Torchilin V.V., Huang L. (1990) FEBS Letters., 268, 235-237.

22. Senior J., Delgado C., Fisher D., et al. (1991) Biochim. Biophys. Acta. 1062, 77-82.

23. Papahadjopouluos D., Allen T.M., Gabizon A., et al. (1991) Proc. Natl. Acad. Sci. USA. 88, 11460-11464.

24. Allen T.M., Hansen C. (1991) Biochim. Biophys. Acta. 1068, 133-141.

25. Torchilin V.P., Omelyanenko V.G., Papisov M.I., et al. (1994) Biochim. Biophys. Acta, 1195, 11-20.

26. Torchilin V.P., Shtilman M.I., Trubetskoy V.S., et al. (1994) Biochim Biophys Acta, 1195, 181-184.

27. Gluck R. (1995) In Vaccine Design: The Submit and Adjuvant Approch (Powell M.F., Newman M.J., eds)., Plenum Press. P. 325-345.

28. Le Bang Son, Kaplun A.P., Symon A.V., et al. (1998) J. Liposome Research. 8, 78.

29. Torchilin V.P. (1998) J. Microencapsul, 15, 1-19.

30. Muller R.H., Ruhl D., Runge S., et al. (1997) Pharm. Res. 14 458-462.

31. Yuan F. (1998) Semin. Radiat. Oncol. 8, 164-175.