Смекни!
smekni.com

Медицинская аппаратура (стр. 2 из 4)

Основной способ защиты от прикосновения применение корпусов, крышек, щитков и других конструктивных элементов, исключающих доступ к токоведущим частям. Приэтом должна быть обеспечена, с одной стороны, достаточная механическая прочность ограждения, а с другой - изоляция его от этих частей.

Изоляция, отделяющая находящиеся под напряжением части от ограждающих металлических частей, называется основной. В ряде случаев основная изоляция может выполнять и функции защиты от прикосновения, например, изоляция открыто проложенных проводов. Типичные примеры основной изоляции: опорные стойки, панели для монтажа зажимов, изоляция монтажных и обмоточных проводов, изоляция осей тумблеров от их контактов и т.п. К основной изоляции предъявляются достаточно высокие требования. Ее сопротивление после испытаний на влагоустойчивость должна быть не менее 2 МОм.

При обеспечении недоступности для прикосновения находящихся под напряжением частей следует различать «ПОЛНУЮ защиту от прикосновения» и «Защиту от случайного прикосновения».

Полная защита от прикосновения обеспечивает при всех обстоятельствах недоступность токоведущих частей. Коснуться их можно, только нарушив защитную оболочку. Такая защита обеспечивается, если находящиеся под напряжением части закрыты корпусом, который не может быть вскрыт без поломки даже с помощью инструмента. Наиболее распространенным примером полной защиты являются изолированные провода, шнуры.

В медицинских аппаратах полную защиту от прикосновения, как правило, обеспечить не удается, поэтому применяется защита от случайного прикосновения. Такую защиту обеспечивает корпус с крышками или стенками, которые могут быть сняты только с помощью инструмента, например, с помощью гаечного ключа, отвертки.

Применение инструмента представляет собой намеренное действие, на которое защита от случайного прикосновения не может быть рассчитана. Точно также намеренным является касание отверткой, гвоздем либо другим металлическим предметом токов едущих частей через вентиляционные или другие отверстия в корпусе аппарата. Однако при этом должны учитываться реальные условия эксплуатации, при которых касание через отверстие не может быть ненамеренным, случайным или, наоборот, использование отверстия необходимо при регулировке или настройке аппарата.

Опираясь на прибор при проведении процедуры, либо передвигая его с места на место, врач или медицинская сестра может случайно вставить пальцы в отверстия корпуса аппарата. Не исключена такая вероятность и для пациента. При подобном ненамеренном действии должна быть обеспечена электробезопасность, Те. исключено касание токоведущих частей.

Особенностью электромедицинской аппаратуры является наличие у отдельных ее видов так называемой рабочей части - электродов, излучателей датчиков и т.п. С помощью рабочей части низкочастотных электролечебных аппаратов осуществляется воздействие на пациента постоянным или низкочастотным током. При этом рабочая часть - электроды - находятся в непосредственном контакте с телом пациента и, естественно, не могут быть защищены от прикосновения; в то же время напряжение на них может быть весьма значительным.

Безопасность пациента и медицинского персонала обеспечивается в этом случае строгим выполнением всех правил проведения процедуры, подробно указанных в инструкции по эксплуатации аппарата.

В ряде случаев при высоком рабочем напряжении на неизолированных электродах применяют специальные меры, уменьшающие возможность нарушения правил эксплуатации и связанную с этим опасность поражения электрическим током.

Электромедицинскую аппаратуру по степени связи с телом пациента различают на четыре типа:

К типу Н относится аппаратура, не имеющая рабочей части и находящаяся вне пределов досягаемости пациента (лабораторные приборы, стерилизационное оборудование, потолочные светильники и др.).

Аппаратура типа В находится в пределах досягаемости пациента и может иметь рабочую часть, предназначенную для контактирования с телом пациента, за исключением непосредственного контакта с сердцем.

Если рабочая часть такой аппаратуры изолирована от доступных для прикосновения частей, она относится к типу BF.

А аппаратура, предназначенная для непосредственного контакта с сердцем, имеет изолированную рабочую часть и относится к типу CF.

Для изделий всех типов при единичном нарушении (обрыв заземляющего провода для изделий классов 0I и 1 , однополюсное выключение сети для изделий класса Н , ток утечки не должен превышать 0,5 мА. Для изделий без защитного заземления, т.е. класса II, в нормальных условиях наибольшая величина тока утечки составляет 0,25 мА для типа Н и 0,1 мА для типов В и BF. Учитывая особую опасность тока утечки изделий типа CF при отсутствии защитного заземления, его величина для изделий класса II в нормальных условиях не должна превышать 0,05 мА.

Значительный вклад в ток утечки на корпус вносит трехжильный сетевой шнур. Особенно существенным этот вклад становится, если длина шнура по каким-либо причинам необычно велика (более 3- 4 м .). В этом случае каждый метр сетевого шнура вносит дополнительный ток vтечки около 2,5 мкА (при напряжении фазы питающей сети 220 В). Поэтому при эксплуатации медицинской техники категорически запрещено применение удлинителей.

Ограничение тока утечки до допустимых величин непосредственно связано с обеспечением достаточных путей тока утечки и воздушных зазоров. Сопротивление изоляции между токами идущими и доступными для прикосновения частями определяется не только удельным сопротивлением материала, из которого изготовлена изоляция, и его толщиной, но и расстоянием между этими частями по поверхности изолятора и по воздуху.

Загрязнение поверхности изоляции, покрытие ее пылью, грязью, влагой, обладающими хорошей проводимостью, является наиболее частой причиной пробоев, либо недопустимого увеличения тока утечки.

Основным средством защиты от поражения электрическим током является обеспечение недоступности находящихся под напряжением частей. Однако одна эта защита не может обеспечивать необходимого уровня электробезопасности. Главная причина этого заключается в том, что основная изоляция, т.е. изоляция токоведущих частей от корпуса, крышек и других средств защиты от прикосновения имеет ограниченную надежность.

Во время эксплуатации под влиянием процессов старения, механических, тепловых и других воздействий изоляционные качества материалов, применяемых для выполнения основной изоляции, ухудшаются. Неправильная эксплуатация аппаратуры, проникновение в неё влаги, пыли, грязи ускоряют износ изоляции. Все эти причины могут в конечном счете привести к нарушению, пробою основной изоляции и как следствие этого появлению опасных напряжений на доступных. металлических частях.

В случае возникновения пробоя изоляции между сетевой цепью и корпусом аппарата говорят о «замыкании на корпус». При замыкании на незащищенный корпус в нем возникает напряжение относительно земли. Человек, касающийся такого корпуса, оказывается включенным в цепь замыкания.

Падение напряжения на сопротивлении тела человека, так называемое напряжением прикосновения, зависит от многих причин, главным образом от изоляции человека от земли и соединенного с ней оборудования. Так, если человек стоит на полу с хорошими изолирующими свойствами или одет в обувь с резиновой подошвой, напряжение прикосновения составит только часть от напряжения на корпусе относительно земли. При расчете напряжения прикосновения основное значение имеет сопротивление пола. Сопротивление обуви, которая может иметь сырую кожаную подошву, как правило, не учитывается.

Дощатые, паркетные полы имеют электрическое сопротивление, составляющее сотни килоом, что достаточно для снижения напряжения прикосновения до допустимой величины.

Однако, влага на полу (вода, реактивы, кровь, моча и др.) уменьшает его сопротивление в сотни раз, лишает пол практически полностью его защитных свойств. Во взрывоопасных помещениях (операционная) полы намеренно выполняются из токопроводящего материала для снятия электростатических зарядов. Такой пол также не может обеспечить существенного уменьшения напряжения прикосновения.

Даже при наличии пола с высоким электрическим сопротивлением прикосновение к корпусу аппарата с нарушенной изоляцией представляет серьезную опасность. Это объясняется большим количеством аппаратуры и оборудования в медицинских помещениях, в связи с чем приходится считаться с возможностью одновременного прикосновения к аварийному аппарату и соединенному с землей оборудованию. При этом защитное действие пола не имеет места, а напряжение прикосновения равно полному напряжению между корпусом поврежденного аппарата и землей. Таким образом, рассматривая появление напряжения на доступных частях аппаратуры и говоря о напряжении прикосновения на этих частях, имеют в виду наихудший случай одновременного касания этих частей и заземленного предмета.

Заземление старейшая мера защиты от напряжений, возникающих на доступных металлических частях аппаратуры, из-за соединения с ними сетевой цепи. Такое соединение может возникнуть в результате нарушения основной изоляции (замыкание на корпус), при каких-либо поломках деталей, обрывах проводов и при других аварийных обстоятельствах.

Идея защитного заземления чрезвычайно проста. В результате соединения с сетевым проводом доступные части оказываются под напряжением относительно земли, с которой источник сетевого напряжения соединен непосредственно (глухое заземление одного из фазных проводов однофазной сети или нейтралли трехфазной сети), либо через сопротивление изоляции и распределенную емкость сетевых проводов (сети, изолированные от земли). Чтобы уменьшить напряжение, под действием которого может оказаться человек, коснувшись таких доступных металлических частей (корпус аппарата), они соединяются с помощью специального низкоомного заземляющего устройства с землей.