Смекни!
smekni.com

История развития и основные достижения современной генетики (стр. 2 из 3)

В период между делениями клетки хромосомы не видны. Они становятся видимыми, когда клетка приступает к делению и тогда хромосомы видны как две соединенные между собой нити – хроматиды.

В основе Парижской классификации хромосом человека (1971 г.) лежат методы специальной дифференциальной окраски, при которой в каждой хромосоме выявляется характерный только для неё порядок чередования поперечных светлых и тёмных сегментов. Хромосомы, имеющие одинаковый порядок генов, имеют и одинаковое чередование полос. У них одинаковое строение (длина, расположение центромеры и т. д.).

Короткое плечо хромосом обозначают латинской буквой p, а длинное – q. Каждое плечо хромосомы разделяют на районы, нумеруемые по порядку от центромеры к теломере. В некоторых коротких плечах выделяют один такой район, а в других (длинных) – до четырёх.

Основная функция хромосом – хранение, воспроизведение и передача генетической информации при размножении клеток и организмов.

4. Временная организация клетки. Клеточный и митотический циклы.

Клеточный цикл – это период жизнедеятельности клетки от момента её появления до гибели или образования дочерних клеток. Типы деления эукариотических клеток: амитоз, митоз, мейоз.

Митотический цикл – это период жизнедеятельности клетки от момента её образования и до разделения на дочерние. Митотический цикл включает интерфазу и митоз.

Интерфаза – это период функционирования и подготовки клетки к делению, она подразделяется на три периода:

а) Пресинтетический (постмитотический) G1 – продолжительность от нескольких часов до нескольких месяцев и даже лет. Клетка выполняет свои функции, увеличивается в размерах, в ней идёт синтез белков и нуклеотидов, накапливается энергия и вещества. Такая клетка содержит диплоидный набор хромосом, каждая хромосома имеет одну хроматиду – 2n2c.

б) Синтетический период S – продолжительность 6 – 8 часов. В клетке происходит репликация молекул ДНК и её содержание в клетке удваивается, т. е. каждая хроматида достраивает себе подобную, генетическая информация к концу периода 2n4c.

в) Постсинтетический период G2 – продолжительность меньше, чем у предыдущих периодов. Клетка готовится к делению, накапливается энергия, синтезируются белки веретена деления, постепенно затухают все синтетические процессы, необходимые для репродукции органоидов, меняется вязкость цитоплазмы, идёт интенсивный синтез АТФ и накопление энергии, происходит репликация центриолей и начало образования веретена деления. Генетическая информация 2n4c. Клетка вступает в митоз.

2) Митоз – это основной способ деления соматических клеток. Непрерывный процесс митоза подразделяют на 4 стадии: профазу, метафазу, анафазу и телофазу. В делящихся клетках в профазе все хромосомы сильно спирализуются, укорачиваются и приобретают компактные размеры и форму. Спирализация хромосом достигает максимума в метафазе и хромосомы удобнее всего изучать (метафазная пластинка). В анафазе центромеры каждой из хромосом разделяются и сестринские хроматиды с этого момента становятся самостоятельными дочерними хромосомами. В телофазе формируются ядра дочерних клеток: хромосомы деспирализуются, строятся ядерные оболочки, в ядре появляются ядрышки. После кариокинеза происходит цитокинез, митоз заканчивается образованием двух дочерних клеток, каждая из которых имеет двойной набор хромосом, каждая хромосома однохроматидная.

Значение митоза в точном распределении генетической информации между дочерними клетками, в поддержании постоянства числа хромосом, в увеличении числа клеток, обеспечивающих рост организма и регенерацию тканей и органов.

Эукариотические клетки могут делиться и прямым делением – амитозом. Это прямое деление клеток и ядер, находящихся в условиях физиологической и репаративной регенерации, или опухолевых клеток. При этом не происходит образования видимых хромосом и веретена деления, возникает перетяжка ядра, затем цитоплазмы, и разделение их на две части. В последнее время установлено, что при амитозе происходит также равномерное распределение генетического материала между дочерними клетками, хотя механизм его не вполне ясен.

Патология митоза – эндомитоз, политения (эндорепродукция), образование новых клеток нарушается, а хромосомы продолжают удваиваться. В результате этого в клетках возникают необычайно крупные ядра. При эндомитозе происходит удвоение хромосом без деления ядра, что приводит к образованию полиплоидных клеток. При политении наблюдается многократное удвоение хроматид, но они не расходятся, и в результате образуются политенные (многонитчатые, гигантские) хромосомы, например, в слюнных железах мухи дрозофилы.

3) Мейоз – это деление половых клеток на стадии созревания, в результате которого образуются половые клетки, гаметы. Мейотическое деление протекает в два этапа – мейоз I и мейоз II. Каждое мейотическое деление подразделяют на 4 фазы: профазу, метафазу, анафазу и телофазу.

Наиболее сложной является профаза мейоза I. На этой стадии происходит конъюгация гомологичных хромосом и кроссинговер. Хромосомы образуют биваленты, состоящие из 4-х хроматид (4-х наборов ДНК). В анафазе гомологичные хромосомы, состоящие из двух хроматид, отходят к противоположным полюсам клетки. Расхождение хромосом носит случайный характер. Содержание генетической информации у каждого полюса становится 1n2c. В телофазе происходит образование двух дочерних гаплоидных клеток, но хромосомы не деспирализуются. После окончания мейоза I наступает короткий промежуток – интеркинез, в течение которого не происходят репликация ДНК и удвоение хроматид.

Мейоз II протекает по типу обычного митоза. В анафазе этого мейоза к полюсам отходят хроматиды и содержание генетического материала становится 1n1c у каждого полюса клетки. В телофазе мейоза II после цитокинеза образуются клетки с гаплоидным набором хромосом, содержащих по одной хроматиде.

Таким образом, в результате двух последовательных делений мейоза из одной диплоидной клетки образуется 4 гаплоидные.

Значение мейоза в редукции числа хромосом в половых клетках для последующего восстановления набора хромосом в зиготе, в конъюгации гомологичных хромосом и рекомбинации генетического материала.

Патология мейоза – нерасхождение хромосом после конъюгации и, как следствие, избыток генетического материала или его недостаток в одной из дочерних клеток – хромосомные и геномные мутации. Также возможны мутации генные как при митозе, так и при мейозе.

5. Гетерохроматин и эухроматин.

Упоминаемый ранее порядок чередования поперечных тёмных и светлых сегментов, образующийся при дифференциальной окраске хромосом, связан с различной степенью конденсации хроматина, зависящей от его функционального состояния. Гетерохроматиновые участки функционально менее активны, чем эухроматиновые. Они содержат прочитанную (транскрибированную ) ДНК, становятся более плотными и хорошо окрашиваются как в состоянии «покоя» так и при делении клетки. Эухроматиновые участки деконденсированы, т. е. более рыхлые, в них локализована большая часть генов, это активный участок хромосомы, окрашивается неинтенсивно. В хромосомах участки эу- и гетерохроматина чередуются и позволяют сделать анализ кариотипа, чтобы выявить нарушения, которые могут приводить к аномалиям развития, наследственным болезням или гибели плодов и эмбрионов на ранних стадиях развития.

Анализ кариотипа предполагает составление кариограммы или идиограммы – это систематизированный кариотип, в котором хромосомы располагаются по мере убывания их величины. Кариограмма – микрофотография хромосом, расположенных согласно строению и величине гомологичными парами.

Техника подсчёта числа хромосом.

Взятую для анализа кровь разделяют: эритроциты осаждают 10%-ным раствором желатина или центрифугированием; лейкоциты помещают в специальную среду, содержащую 50 ингридиентов. Среди которых есть специфический белок фитогемагглютинин – вытяжка из семян бобовых. Благодаря ему лейкоциты начинают интенсивно делиться и хромосомы можно изучать на стадии метафазной пластинки. Культуру помещают в термостат в специальных флаконах на 3 дня при 370 С. Потом в пробу добавляют алколоид колхицин, разрушающий нити веретена деления, деление приостанавливается, хромосомы не способны расходиться к полюсам клетки. Добавляют гипотонический раствор, проводят фиксацию и окрашивание. Затем хромосомы фотографируют, микрофотографию увеличивают в размерах, хромосомы вырезают, подбирают гомологичные пары по размерам, расположению центромеры, гетеро- и эухроматиновым участкам.

6. Половой хроматин.

Различия полов обусловлены Х и У хромосомами (половыми). Половые отличия в строении ядер соматических клеток обнаружили в 1949 г. Бертрам и Барр, изучая нейроны кошки. Эти отличия присущи клеткам всех млекопитающих в период интерфазы. Интерфазные ядра содержат на переферии чечевицеподобные глыбки хроматина размерами от 1,8 до 1,2 мкм, примыкающие к ядерной оболочке и отличающиеся от ядрышек. Их назвали по имени исследователя «тельца Барра». Тельца Барра отсутствуют у самцов. Лейкоциты женщин содержат своеобразный придаток ядра, гомолог телец Барра, «барабанные палочки». Это - половой хроматин. Его наличие в клетках женщин связано с Х-хромосомами, которых у женщин две. Одна из них генетически менее активная, синтез ДНК в ней идёт позднее, она гетерохроматичная, окрашивается иначе, чем её гомолог. У мужчин половые хромосомы разные – Х и У, и они обе одинаково активны в интерфазе.