Смекни!
smekni.com

Роль систем отображения информации в процессе принятия решений (стр. 2 из 3)

б) оператор-манипулятор. Основную роль играют механизмы сенсомоторной деятельности, связанной с восприятием и переработкой информации и осуществлением ответного действия. К этой категории операторов предъявляются высокие требования по их тренированности и координации движений, способности мгновенно ориентироваться и принимать решения в критических ситуациях и автоматически выполнять эти решения.

в) оператор-наблюдатель - это классический тип оператора. Деятельность: важная роль отводится информационным и концептуальным моделям. Пример: диспетчер транспортных систем, операторы слежения радиолокационных станций.

г) оператор-исследователь - опирается на аппарат понятийного мышления и опыт. Поэтому для него возрастает значимость информационной модели. Пример: исследователи любого профиля.

д) оператор-руководитель, объектами управления которого являются другие люди. Управление может осуществляться непосредственно и через каналы связи. В деятельности операторов-исследователей и операторов-руководителей все большее значение приобретают процессы формирования целей и выбора способов их достижения.

е) оператор-проектировщик - это человек, который непосредственно включен в процесс машинного проектирования в составе САПР.

4. Основные характеристики человека-оператора в системах "Человек-машина"

Основными характеристиками человека-оператора являются быстродействие, точность, надежность. Оценкой быстродействия оператора является время решения задачи, т.е. время от момента появления сигнала до момента окончания управляющих воздействий. Вместе с показателями быстродействия технических элементов системы "человек-машина" этот показатель определяет быстродействие всей системы. Оценкой его является время прохождения информации по замкнутому кругу "человек-машина".

Тц = ТАУоп + сумм(i=1; n)t mi

где ТАУоп - время отработки информации (решение задачи управления) оператором;

n - число звеньев машины; t mi - время задержки информации в i-м звене машины.

При заданном времени цикла регулирования Тц (исходя из общих технических требований к системе) и известных значениях t mi требуемое быстродействие оператора должно удовлетворять условию

ТАУоп <= Тц - сумм(i=1; n)t mi = tл

где tл - лимит времени, отводимый оператору для решения задачи. Для проверки выполнения условия нужно знать время ТАУоп, которое определяется либо экспериментально для реальных систем, либо расчетным путем для проектируемых систем с помощью методов прогнозирования времени решения задач оператором. Из них относительно простой - информационный метод. Он применяется на ранних этапах проектирования. В основу информационного метода положена линейная зависимость между временем решения задачи оператором и количеством перерабатываемой информации:

ТАУоп = a + bH = a + H/Vоп (2.1)

а - скрытое время реакции, а = 0,2/0,6 с; b - время переработки одной двоичной информации; H - количество перерабатываемой оператором информации; Vоп - скорость переработки информации оператором, Vоп = 2/4 дв.ед./с. При работе оператора по заранее отработанному алгоритму его деятельность может быть представлена как совокупность последовательно осуществляемых реакций. Время простой реакции ТАУпр определяется временем восприятия сигнала ТАУв и временем осуществления моторного акта ТАУм, связанного с движением руки к органу управления

ТАУпр = ТАУв + ТАУм

Время сложной реакции отличается от времени простой временем, затрачиваемым на выбор нужного сигнала, принятие решения на осуществление управляющего воздействия.

ТАУоп = ТАУв + ТАУреш + ТАУоу + ТАУм (2.2)

где ТАУреш - время принятия решения; ТАУоу - время поиска и обнаружения нужного органа управления. Каждое из слагаемых, входящих в (2.2), рассчитывают с помощью выражения (2.1). Точность работы оператора есть степень отклонения значения параметра, измеряемого оператором, от истинного, заданного значения. Количественно этот параметр оценивается погрешностью, с которой оператор измеряет данный параметр:

y = Iп - Iф

где Iп - истинное значение параметра; Iф - измеряемое, фактическое значение параметра. Различают систематическую и случайную погрешности.

Случайна погрешность оценивается среднеквадратической погрешностью, систематическая погрешность - значением математического ожидания отдельных погрешностей. Точность работы оператора зависит от многих факторов: характеристик сигнала, степени сложности задач, условий и темпа работы, индивидуальных особенностей, квалификации и др. Надежность человека-оператора: характеризует его способность выполнять в полном объеме возложенные на него

функции при определенных условиях; характеризуется безошибочностью, готовностью, восстанавливаемостью и своевременностью. Основным показателем безошибочности является вероятность безошибочной работы на уровне отдельной операции и на уровне полного алгоритма в целом. Вероятность безошибочного выполнения операций j-го вида и интенсивность ошибок, допущенных при этом, определяется как

Pj = (Nj - nошj)/ Nj лямбдаj = nошj/(NjTj)

где Nj, nошj - общее число выполненных операций j-го вида и допущенное при этом число ошибок; Tj - среднее время выполнения операций j-го вида.

Вероятность безошибочного выполнения алгоритма при известных выполняемых операциях лямбдаj

Pоп = Пkj Rj Ё(примерно) e -сумм(j=1; r:) (1 - Pj)kj =

= e-сумм(j=1; r) лямбдаj тауj kj

где kj - число выполняемых операций j-го вида; r - число различных видов

операций (j = 1,2,.., r).

Коэффициент готовности характеризует вероятность включения человека-оператора

в работу в любой произвольный момент времени:

kоп = 1 - Tо/T

где То - время, в течение которого человек не может принять поступившую к нему информацию; Т - общее время работы человека-оператора.

Показатель восстанавливаемости определяется как вероятность исправления оператором допущенной ошибки:

Pисп = Pк Pобн Pи

где Pк - вероятность выдачи сигнала схемой контроля; Pобн - вероятность обнаружения сигнала оператором; Pи - вероятность исправления ошибочных действий при повторном выполнении алгоритма.

Показатель своевременности характеризует вероятность выполнения задачи в течение времени тау <= tл, где tл - лимит времени, превышение которого рассматривается как ошибка. Эта вероятность

Pоп = Pтау<=tл=интеграл(от 0 до tл) (f(тау) dтау)

где f(тау) - функция распределения времени решения задачи человеком-оператором.

Показатели надежности системы "человек-машина" определяются через показатели надежности ее звеньев при определенных условиях. Для систем непрерывного типа показателем надежности является вероятность безотказного и безошибочного протекания производственного процесса в течение времени. Такое возможно если: технические средства работают исправно; при их отказе оператор безошибочно и своевременно выполнил требуемые действия или допустив ошибки в своих действиях своевременно их исправил. Рассчитывается по формуле:

Pч.м (t)=Pт(t)+[1-Pт(t)]Kоп[PопPсв+(1-Pоп)Pисп(Tл)]

где Pт - вероятность безотказной работы технических средств.

5 Основные этапы процесса принятия решения

Принятие решения является составной центральной частью деятельности человека оператора в системе управления. Процедура принятия решения включает формирование последовательности действий для достижения цели на основе преобразования некоторой исходной информации.

К основным объективным и субъективным условиям, определяющим реализацию процессов решения в деятельности оператора, относят:

наличие дефицита информации и времени, стимулирующих "борьбу" гипотез;

наличие некоторой "неопределенностной ситуации", определяющей борьбу мотивов у субъекта, принимающее решение;

осуществление волевого акта, обеспечивающего преодоление

неопределенности, выбор гипотезы, принятие на себя определенной

ответственности.

Условия принятия решения во многом зависят от степени неопределенности информации. Процедура принятия решения в различных ситуациях неопределенности будет иметь разный характер. Процесс принятия решений включает ряд стадий, определяющих содержание основных компонентов процесса - информационной подготовки решения и процедур принятия решения. Информационная подготовка решения на первой стадии представляет собой совокупность действий и операций по приему и обработке информации о внешней среде, состоянии системы управления, ходе управляемого процесса. Вторая стадия включает действия по анализу и оценке ситуации с помощью некоторой системы оценочных критериев и эталонов, которые определяют характер и направленность необходимых преобразований ситуации. Основная задача на этом этапе заключается в адекватном преобразовании концептуальной модели в модель проблемной ситуации, подлежащей решению. Третья стадия протекает в виде целенаправленных действий над исходными и преобразованными данными. В результате такого оперирования формируется более полное представление о предметном содержании ситуации, возможных направлениях ее развития. Четвертая стадия - это процедура выработки и принятия решения. На пятой стадии осуществляется реализация принятого решения путем выполнения определенных действий или отдачи соответствующих распоряжений.