Смекни!
smekni.com

Основы системного анализа (стр. 9 из 15)

Можно выделить пять основных способов управления, которые различаются в зависимости от степени известности траектории, приводящей систему к цели, и возможности управляющей системы удерживать управляющую систему на этой траектории.

Первый, простейший случай имеет место тогда, когда нужная траектория известна точно, а следовательно, априори известно и правильное управление Uo (t). В этом случае можно управлять, не учитывая развитие событий. Примерами такого типа управления является стрельба из ружья, работа компьютера по жесткой программе и т.п. Часто оказывается, что процессы на неуправляемых входах Vo (t) отличаются от ранее предполагаемых, и система сходит с нужной траектории.

Второй тип управления - регулирования. Он заключается в том, что, наблюдая текущую траекторию Y(t) и находя разность Y(t) - Y(to), можно определить дополнительное управляющее воздействие, которое возвратит систему на нужную траекторию. Примером регулирования является управление, осуществляемое операторами-станочниками, автопилотом и т.п.

Следующие способы управления возникают в связи с необходимостью управления в условиях, когда либо невозможно задать траекторию системы на весь период времени, либо отклонение от нее настолько велико, что вернуться на нужную траекторию невозможно. В этом случае необходимо спрогнозировать текущую траекторию Y(t) на будущее и определить, пересечет ли она целевую область Y.



S

V1


Вход U S Выход

X V Y

Рис. 1 Схема функционирования управляемой системы

Управление по параметрам (третий тип управления) состоит в подстройке параметров системы до тех пор, пока такое пересечение не будет обеспечено. Например, этому классу принадлежит работа пилотов, адаптивные и автоматизированные системы управления и т.п.

27. Классификация систем по способам управления

Первый уровень классификации по признаку: управляющий блок внутри системы или вне (третий класс - управление, разделено: вне и внутри). На втором уровне: первый тип отражает ситуацию, когда траектория, ведущая систему к цели известна точно, а значит и заранее известно правильное управление их. (Работа ЭВМ по программе, использование телефона, ...). Чаще под влиянием неуправляемых входов или неучтенных факторов система сходит с траектории. Пусть y(t) - траектория, которую мы наблюдаем; y0 (t) - "нужная" траектория; по значениям y(t)- y0 (t) определяется дополнительное к программному управление, которое вернет систему на нужную траекторию. Это называется регулирование (автопилот, оператор-станочник). Если "нужная" траектория неизвестна или уклонена настолько больше, что возврат невозможен, то прогнозируется поведение текущей траектории и подстраиваются параметры системы так, чтобы траектория пересекла целевую область y* (адаптация живых организмов к изменяющимся условиям жизни, работа водителей и пилотов).

Иногда управление параметрами не позволяет достичь целевой области, т.е. цель для данной системы не достижима. Выход - в изменении структуры системы, в поисках такой, при которой возможно попадание в целевую область. Такое управление называют структурной адаптацией (ГАП, сельхозмашины со сменными орудиями, мутации организмов в ходе естественного отбора, ...). Может быть и так, что какая-то цель недостижима и при структурной адаптации, тогда необходим отказ от старой цели и задание новой - управление (адаптация) по целям.

Для достижения нужного управления проводится отбор среди возможных управлений путем их сравнения по каким-то критериям, оценивающим последствия каждого из них. Для этого нужна модель управляемой системы. Для ее создания, актуализации (запуска в работу) и поддержания в процессе функционирования необходимы ресурсы (чтобы получать решения нужного качества и к нужному моменту времени).


28. Большие и сложные системы. Классификация систем по ресурсной обеспеченности управления

Научно-техническая революция вызвала возникновение нового объекта исследований в области управления, получившего название «большие системы».

Важнейшими характерными чертами больших систем являются: целенаправленность и управляемость системы, наличие у всей системы общей цели и назначения, задаваемых и корректируемых в системах более высоких уровней; сложная иерархическая структура организации системы, предусматривающая сочетание централизованного управления с автономностью частей; большой размер системы, то есть большое число частей и элементов, входов и выходов, разнообразие выполняемых функций и т. д.; целостность и сложность поведения. Сложные, переплетающиеся взаимоотношения между переменными, включая петли обратной связи, приводят к тому, что изменение одной влечет изменение многих других переменных.

К большим системам относятся крупные производственно-экономические системы (например, холдинги), города, строительные и научно-исследовательские комплексы.

Подавляющее число экономических и управленческих задач имеет такой характер, когда уже заведомо можно сказать, что мы имеем дело с большими системами. Системный анализ предусматривает специальные приемы, с помощью которых большую систему, трудную для рассмотрения исследователем, можно было бы разделить на ряд малых взаимодействующих систем или подсистем. Таким образом, большой системой целесообразно назвать такую, которую невозможно исследовать иначе, как по подсистемам.

Помимо больших систем в задачах управления экономикой выделяют сложные системы.

Сложной целесообразно называть такую систему, которая строится для решения многоцелевой, многоаспектной задачи. Непосредственным выводом из концепции сложной системы для анализа и проектирования систем управления является требование учета следующих факторов:

1. Наличие сложной, составной цели, параллельное существование разных целей или последовательная смена целей.

2. Наличие одновременно многих структур у одной системы (например, технологической, административной, функциональной и т. д.).

3. Невозможность описания системы в одном языке, необходимость использования спектра языков для анализа и проектирования отдельных ее подсистем.

Имеющиеся ресурсы не всегда обеспечивают качественное и своевременное решение по управлению. Обычно энергетические затраты на модель и выработку управления малы, но возможны ситуации, когда энергопотребление (при питании от общего ограниченного источника энергии) для управляемой и управляющей систем соизмеримы (космический аппарат, исследовательский робот, установки для экспериментов в ... частиц высоких энергий). Возникает для таких систем проблема наилучшего распределения ресурсов.

Материальные ресурсы - ресурсы ЭВМ при моделировании на ЭВМ - они лимитируют решение задач большой размерности в реальном масштабе времени (экономические, организационно-управленческие, ...).

Большие системы - системы, проблемы моделирования которых заключаются в их большой размерности (решение - декомпозиция или применение более мощных средств).

По информационному ресурсу: его достаточно для успешного управления - система простая. Если информации в системе не хватает для эффективного управления (непредвиденные, нежелательные результаты управлений), то система называется сложной. Сложность - это объективно существующее отклонение между управляемой системой и моделью в управляющей системе. Преодоление сложности - получить (после конкретной причины сложности) недостающую информацию или сменить цель.

Возможны комбинации разных типов (по ресурсам) систем:

1) малые простые /бытовые и справные приборы для пользователя/;

2) малые сложные /неисправные бытовые приборы для пользователя/;

3)большие простые /шифрозамок сейфа для похитителя, точный прогноз погоды, межотраслевой баланс/;

4) большие сложные /живой организм, мозг, экономика страны/.

29. Распознавание больших и сложных систем.

Следует различать сложные и большие системы.

Сложная система – система с разветвленной структурой и значительным количеством взаимосвязанных и взаимодействующих элементов (подсистем), имеющих разные по своему типу связи, способная сохранять частичную работоспособность при отказе отдельных элементов (свойство робастности).

Сложная система - система, обладающая, по крайней мере, одним из перечисленных признаков:

а) допускает разбиение на подсистемы, изучение каждой из которых, с учетом влияния других подсистем в рамках поставленной задачи, имеет содержательный характер;

б) функционирует в условиях существенной неопределенности и воздействие среды на нее обусловливает случайный характер изменения ее параметров или структуры;