Смекни!
smekni.com

Методы организации производства (стр. 4 из 8)

Третий этап автоматизации организация комплексно-автоматизированных участком, цехов и заводов в целом с использованием электронно-вычислительной техники.

Возможности автоматизации производственных процессов во многом зависят от типа производства. Наиболее просто поддается автоматизации массовое производство, характеризующееся узкой специализацией рабочих мест, четкой и устойчивой направленностью потоков заготовок, материалов, деталей от одного рабочего места к другому, я также между цехами. Массовое производство характеризуется выпуском изделий с хорошо отработанной, неизменной конструкцией (хотя возможен выпуск нескольких близких по конструкции модификаций основного изделия), высокой стабильностью технологических процессов на всех рабочих местах. Здесь развитие автоматизации идет по пути создания комплексных автоматических линий, переналаживаемых на различные размеры деталей

В серийном производстве автоматизация производственных процессов связана с большой обновляемостью производственной программы (например, в машиностроении в среднем по 20 % в год). При этом в процессе производства для улучшения технологических и эксплуатационных свойств продукции изменяют конструкцию изделий, одновременно в производстве может находиться несколько серий разных изделий. Это требует гибкого использования производственного оборудования, создания предметно-замкнутых участков и групповых поточных линий, компонующихся из быстро переналаживаемых одно- и многопозиционных станков.

Большие трудности встречаются при автоматизации мелкосерийного и единичного производства. Их преодолению способствовало создание систем числового программного управления (ЧПУ) рабочими циклами станков. В станках с ЧПУ программа работы станков задается цифрами, получаемыми непосредственно из чертежей обрабатываемых деталей.

В СССР серийное производство станков с ЧПУ началось в конце 70-х, к концу же 1985 г. число единиц оборудования с программным управлением в промышленности составило более 125 тыс. В настоящее время все наиболее распространенные виды станков (токарные, револьверные, фрезерные, сверлильные, расточные и т. д.) оснащены системами ЧПУ. Практика использования станков с ЧПУ на отечественных и зарубежных предприятиях выявила их огромные технологические, организационные и экономические преимущества: производительность таких станков в сравнении с обычными выше примерно в 3—5 раз; трудоемкость переналадки ниже на 60—70 %, так как переналадка станков заключается в замене программы, записанной на соответствующем носителе, а в ряде случаев — в замене инструмента; значительно сокращается потребность в производственных площадях; меньше требуется затрат на оснастку; экономится время на контроль, повышается качество продукции. Широкий диапазон работ, выполняемых этими станками, делает их незаменимыми в единичном и мелкосерийном производстве. Они также применяются в серийном и массовом производстве, есть опыт включения станков с ЧПУ в поточные линии.

Автоматизация вспомогательных операций, выполняемых в процессе обработки деталей на металлообрабатывающих станках, способствовала появлению многоинструментальных станком с ЧПУ, так называемых обрабатывающих центров. По производительности они эквивалентны 3 — 4 станкам с ЧПУ и 8-12 обычным станкам. Расширение области применения станков с ЧПУ, повышение из надежности и производительности осуществляются на основе объединения станков с ЧПУ и ЭВМ в единую комплексную систему Внедрение систем группового управления станками с ЧПУ, в свою очередь, приводит к изменениям к организации производства. Появляется необходимость взаимной увязки работы станков. Отсюда — задача одновременной автоматизации процессов производства и оперативного планирования и управления. В настоящее время у нас в стране и за рубежом ведутся разработки единых систем автоматизированного проектирования, изготовления деталей на станках с ЧПУ и календарного планирования их производства.

В решении задач комплексной автоматизации особое место принадлежит внедрению в производство автоматических манипуляторов с программным управлением промышленных роботов.

Промышленные роботы современных конструкций — это универсальные автоматизированные машины, запрограммированные на выполнение от нескольких десятков до нескольких сотен последовательных команд. Их универсальность, возможность быстрой переналадки при смене условий или объектов производства, высокая надежность, длительный срок службы позволяют осуществлять гибкую автоматизацию серийного и мелкосерийного производства, освобождают человека от выполнения монотонных, утомительных операций, а также процессов, протекающих во вредной среде.

Современный период развития промышленного производства характеризуется, как уже отмечалось, высокой степенью обновляемости объекта производства, который во всех без исключения случаях оказывается динамичнее условий производства. В связи с тем, что производственный аппарат промышленных предприятий обновляется медленнее, чем изделия, выпуск которых они призваны осуществлять, возникает одна из острейших проблем современного производства — проблема его адаптации к быстро меняющимся требованиям подлежащей выпуску продукции.

Производственная система, соответствующая требованиям современного этапа НТР, учитывающая современные тенденции и перспективы развитая промышленного производства, должна быть; высокоэффективной — отличаться высокой производительностью при минимальных издержках производства; высоко-адаптивной, что предполагает высокий уровень гибкости техники и технологии, обеспечивающий минимум потерь трудовых и материальных затрат при смене (обновлении) объектов производства;

стабильной - характеризоваться постоянным составом и структурой технических средств, технологического процесса и организации производства в течение определенного периода времени.

Современная производственная система должна сочетать гибкость, низших (единичного, мелкосерийного) и высокую производительность, высших (крупносерийного, массового) типов производства. При этом под гибкостью производства понимается его способность без каких-либо существенных изменений техники, технологии и организации производства обеспечивать освоение новых изделий в кратчайшие сроки и с минимальными затратами трудовых и материальных ресурсов вне зависимости от изменения конструктивных и технологических характеристик изделий.

Гибкое автоматизированное производство представляет собой организационно-техническую производственную систему, функционирующую на основе комплексной автоматизации, обладающую способностью (в диапазоне технических возможностей) с минимальными затратами и в короткие сроки заменить выпускаемую продукцию па новую путем перестройки технологического процесса (в пределах наличного станочного парка и обслуживающего комплекса) за счет замены управляющих программ.

Основными уровнями развития ГАП являются гибкий производственный модуль, или ячейка (ГПМ) и гибкий производственный комплекс (ГПК).

ГПМ — это способная автоматически переналаживаться и автономно функционировать единица автоматического оборудования (с ЧПУ), оснащенная автоматизированными устройствами (роботами) загрузки заготовок, удаления обработанной детали (узла), отходов (например, стружки), подачи и замены инструмента, измерений и контроля в процессе обработки, а также устройствами диагностики неполадок и отказов в работе.

ГПК — два и более взаимосвязанных гибких производственных модуля, объединенных автоматизированными системами управления, транспортно-складской системой и системой инструментального обеспечения, синхронизацию работы которых осуществляет (как и управление всем производственным циклом) единая ЭВМ или сеть ЭВМ, обеспечивающая быстрый переход на обработку любой другой детали (узла) В пределах технических возможностей оборудования.

Гибкое автоматизированное производство - два и более взаимосоединенных гибких производственных комплекса с автоматизированной инженерной и технической подготовкой производства, обеспечивающей быструю перестройку технологии производства и выпуск новых изделий,

ГАП состоит из трех основных компонентов: автоматизированной системы управления производством (АСУП), автоматизированных участков подготовки производства и гибких автоматизированных производственных комплексов. В ГАП интегрируется АСУП САПР конструирования и технологии, а также автоматизированная система управления технологическими процессами (АСУТП). Такая структура ГАП является общей для всех видов производств (механообрабатывающих, литейных, сварочных) и единой как для основного, так и для вспомогательного производства.

В зависимости от структурного уровня производственной единицы ГАП может представлять собой участок, цех, завод. Поэтому под АСУП понимается автоматизированная система управления той производственной единицей, которая автоматизирована, при этом предусматривается наличие связей с АСУП более высокого иерархического уровня.

Гибкое автоматизированное производство предполагает автоматизацию практически всех технологических, вспомогательных, транспортных операций. Например, в ГАП механообработки могут быть автоматизированы: загрузка заготовок па станки и снятие с них деталей; обработка деталей по заданной программе; смена режущих инструментов; контроль деталей в процессе и после обработки; уборка стружки; транспортирование деталей от станка к станку в любой задаваемой последовательности; изменение программ обработки; управление работой всего комплекса оборудования, входящего в состав ГАП, по принципу гибко перестраиваемой технологии.