Смекни!
smekni.com

Галогениды серебра в фотографии (стр. 2 из 4)

Электропроводность галогенидов серебра

Галогениды серебра обладают высокой диэлектрической проницаемостью, т. е. способностью ослаблять внешнее электрическое поле: у хлорида серебра она равна 12,2, a y бромида—13,0. По этому признаку их следовало бы отнести к диэлектрикам, но подобное определение не вполне согласуется с другими электрическими свойствами галогенидов серебра. В частности, даже в темноте они обладают некоторой электропроводностью, хотя и слабой; на свету она резко возрастает, как и у многих полупроводников, а величина удельного сопротивления тоже заставляет отнести галогениды серебра скорее к полупроводникам, чем к диэлектрикам. Более подробное изучение электрических свойств галогенидов серебра показало, кроме того, что в темноте носителями тока в них служат ионы, а на свету — преимущественно электроны, что типично для так называемых фотопроводников. Оба факта заслуживают серьезного внимания,

Выше уже говорилось, что при не слишком низких температурах в кристаллах AgHal имеется заметное число межузельных ионов Ag+, способных перемещаться внутри кристалла, тогда как среди ионов Hal- межузельных практически нет вовсе. Если поместить кристалл AgHal между двумя электродами, в нем должен пойти ионный ток, что и подтверждается опытом. Ионы Ag+, доходя до катода, должны будут на нем восстанавливаться до металла; действительно, такое отложение серебра, т. е. своеобразный электролиз не в растворе, а в твердом теле, при достаточно длительном приложении поля тоже обнаружено на опыте. Читателю, привыкшему считать, что при электролизе происходит разложение вещества и поэтому отложение продуктов электролиза должно, идти на обоих электродах, может показаться странным отложение в случае галогенидов серебра только на катоде. Но нельзя забывать, что хотя в электролизе галогенида серебра фактически участвует лишь катионная часть решетки, но двигаются в кристалле не только положительные заряды в виде межузельных ионов Ag+: подвижность имеют и вакансии, оставшиеся от этих ионов.

Чтобы понять, как это происходит, применим рассуждение, весьма обычное для физики: если в какой-то точке недостает положительного заряда, то в ней как бы появился избыточный отрицательный заряд, причем во внешнем поле такой вроде бы воображаемый заряд обладает многими особенностями реального заряда. Обратимся к рис. 4. Пусть один из подвижных ионов Ag+, оставив после себя вакансию, проходит при своем движении к катоду мимо другой вакансии. Не исключено, что он окажется захваченным этой вакансией и займет ее. Тогда об этом событии можно рассказать и как о перемещении катиона в направлении катода из точки Р в точку Q, и как о перемещении отрицательной вакансии в направлении анода из точки Q в точку Р. То и другое—перенос заряда, т. е. ток, и нет способа установить, какая из двух версий правильнее по существу. Поэтому принято говорить, что есть и движение катионов, и движение катионных вакансий, а участие их в прохождении тока и электролизе считается равноправным. Физически разница состоит в том, что при движении катионов переносится масса и мы видим отложение вещества на катоде, а при движении вакансий переносится пустота и не только не происходит отложение вещества на аноде, но даже и создается вблизи него своеобразная полость, в которой все больше и больше недостает серебра, ушедшего к катоду, и остается только галоген.

Электропроводность галогенидов серебра в темноте сильно зависит от условий изготовления кристалла, его биографии, что особенно заметно при температурах выше комнатной: здесь различия между отдельными образцами могут доходить до десятков и даже сотен раз. На темновую проводимость галогенидов серебра сильно влияют также примеси солей с валентностью иной, нежели у Ag+ и Наl-: как уже говорилось, каждый такой примесный нон, включенный в решетку, увеличивает в ней число подвижных ионов и их вакансий. Кроме того, ионная проводимость очень сильно зависит от температуры, поскольку определяется именно тепловыми точечными дефектами, а число их при повышении температуры резко возрастает: например, в бромиде серебра при повышении температуры от 0 до 20 °С — более чем втрое. Однако для дальнейшего без большой ошибки можно считать, что при комнатной температуре для микрокристаллов бромида серебра в фотоэмульсиях удельная проводимость довольно близка к 10-11 м •Oм –1 • мм-2, а удельное сопротивление— соответственно к 1011 Oм • мм-2 мм-; для хлорида серебра удельное сопротивление раз в десять выше.

При освещении электропроводность галогенидов серебра резко возрастает, причем носителями тока становятся преимущественно электроны (сохраняющаяся ионная проводимость на фоне этого тока вообще почти незаметна). Значит, в кристаллах галогенида серебра, как и всех полупроводников, а также многих твердых диэлектриков, свет вызывает внутренний фотоэффект. Выяснилось, что электроны отрываются светом от ионов Hal"; после отрыва электрона место его освобождения представляет собой анион без электрона, т. е. нейтральный атом Hal. С решеткой такой атом почти не связан, поскольку силы в ней по преимуществу электрические, а он нейтрален, и это дает ему возможность уйти из решетки. Однако размеры атома достаточно велики, чтобы мешать ему свободно перемещаться по кристаллу, и поэтому его движение происходит примерно таким же образом, каким перемещается вакансия (было показано на рис. 4). Вероятно, теперь читатель уже не удивится, если место отсутствия электрона мы станем рассматривать как своего рода положительный заряд (его так и называют—“положительная дырка”) и будем говорить не только о движении электронов к аноду, но и о движении дырок к катоду; схематически такое движение показано на рис. 5.

Фотоэффект в любом веществе характеризуют так называемой красной границей, т. е. той наибольшей длиной волны, при которой свет еще способен вызывать фотоэффект в данном веществе. Для хлорида серебра красная граница лежит вблизи 380 нм, т. е. в близкой ультрафиолетовой области, видимый свет никакого фотоэффекта в хлориде серебра не вызывает. Для бромида красная граница лежит уже в видимой области, но на самом ее краю - вблизи 430 нм. Добавление иодида серебра к хлориду и бромиду смещает их красную границу в длинноволновую сторону, в отдельных случаях до 500 нм. Однако все эти данные относятся к беспримесным галогенидам серебра: наличие примесей может увеличить приведенные значения, иногда довольно значительно. Так, в некоторых случаях примесь сульфида серебра в бромиде сдвигала красную границу до 600 нм и более. Имеются также заметные различия в положении красной границы у монокристаллов, не имеющих внутренних протяженных дефектов, и поликристаллов, богатых межблочными границами, у крупных кристаллов и мелких, а также у кристаллов, подвергавшихся и не подвергавшихся деформации; во всех случаях кристаллы менее совершенные имеют более длинноволновую красную границу, чем более совершенные. Если вспомнить, что примеси тоже нарушают совершенство кристалла, внося местные искажения в его решетку, то можно почувствовать за всеми этими фактами общую закономерность: чем более дезорганизована решетка кристалла, тем меньшей энергии светового кванта хватает ей для фотоэффекта (напомним, чем длина волны ? больше, тем энергия кванта Е меньше, так как Е == hv ==hc/, где h—постоянная Планка, с—скорость света в пустоте, v—его частота). С этим общим утверждением сопоставим некоторые сведения из раздела 1.1

Там речь шла о том, что любое нарушение, особенно если оно протяженное, вызывает образование в решетке потенциальной ямы, т. е. малой области с потенциальной энергией меньшей, чем в ненарушенной части решетки, причем яма тем глубже, чем нарушение сильнее. Впрочем, среди, нарушений большинство обычно составляют такие, которым соответствуют ямы совсем неглубокие. Если в одну из них попадает электрон, перемещающийся по кристаллу, то его дальнейшая судьба зависит от того, хватит ли тепловой энергии окружающей решетки, чтобы его оттуда высвободить, или же ему предстоит долгая жизнь в яме. Что эта картина близка к действительности, показали опыты, в которых фототок при освещении галогенида серебра оказывался тем меньше, чем больше создавалось нарушений в решетке кристалла (деформации, примесные включения и дефекты, особенно на поверхности) — иными словами, часть электронов оставалась в ямах временно или навсегда и в прохождении тока не принимала участия. Не все нарушения равноценны по их влиянию на фототок, которым соответствуют более глубокие ямы, оказывают на его величину большее влияние. Остается связать эти данные с зависимостью красной границы от степени несовершенства кристалла,

При фотоэффекте энергия поглощенного кванта света расходуется на работу по отрыву электрона, а что останется — на сообщение ему кинетической энергии; если энергии не хватает даже на отрыв электрона, фотоэффекта не будет, мы окажемся за пределами красной границы. Второе слагаемое может быть различным, поскольку фотоэффект может вызываться квантами с различной энергией, но первое неизменно, как неизменна и сама красная граница для данного вещества: это слагаемое характеризует paзность потенциальных энергий электрона до и после отрыва. Если все места решетки равноценны, нарушений в ней нет, то эта величина одинакова всюду и определяется свойствами правильной решетки данного вещества в целом. Если же в решетке имеются па рушения, то разность в местах нарушения будет меньше, чем в ненарушенной решетке: в таких местах требуется не вообще высвободить электрон из узла решетки, а только перенести его из узла на дно данной потенциальной ямы, и чем яма глубже, тем меньше на это нужно энергии. Глубоких ям все перечисленные нами нарушения, как правило, не создают; более того, когда такие ямы нужны (об этом речь пойдет в главе 2), их создают несколько иным путем. Из неглубоких ям, соответствующих обсуждаемым здесь нарушениям, электрон чаще всего может легко -выйти, восполнив недостающую ему энергию за счет тепловой энергии окружающей решетки. Так или иначе, в данной ситуации для полной свободы перемещения по кристаллу электрон использует энергию от двух источников — от поглощенного кванта и от окружающей решетки, тогда как если бы нарушений не было и электрон не оказался бы сначала в яме, всю энергию ему должен был бы предоставить поглощенный квант. Такой путь не запрещен и в кристалле с нарушениями, но он не обязателен, и потому для фотоэффекта может хватить и кванта с несколько меньшей энергией; как раз это и находит свое отражение в смещении красной границы в сторону больших длин волн или меньших энергий кванта.